7 Numerical Methods

I encounter in this paper different optimization problems that do not have closed forms: We have
already seen that the lasso regression, the elastic net regression, the group lasso and the Huber loss
function ( and its combination with other penalization method) do not have closed form solution. In
this paper, I propose to solve all of the following methods using an Accelerated Proximal Gradient
Descent method.

Accelerated Proximal Gradient Descent method. In this paper, I use the accelerated prox-
imal gradient descent algorithm in order to solve the various proposed regularized and non regularized
convex loss functions. This algorithm combines two different generic convex optimization methods,
namely the accelerated gradient descent and the proximal gradient descent methods.

The proximal gradient descent is a method to optimize convex non smooth functions. There are
different other methods that also minimize non smooth functions, but what makes proximal method
interesting is its speed. Hence, while the ubiquitous sub gradient method®*, for instance, converges at
a rate of o(Z), the accelerated gradient descent has a speed of o(%) (It converges as rapidly as the
vanilla gradient descent). This optimization method relies principally on two pillars:

The first is the Moreau Proximal Point Algorithm (PPA) typically applied in the optimization of
non-smooth functions. Formally, for some Min, f(x) problem, given a non-smooth function f(.), the
PPA algorithm is defined as such: z*! = prox_; («) = Argmin, vf(y) + 3 [l2" — y||3.65 That is, the
PPA defines some simple convex and differentiable function of y, vf(y) + % |zt — y||§7 which is tangent
to f(z) at =(¥); such that its minimum is easily derivable. At each iteration, the new 2(**1 is the
minimizer of the tangent function at z(* , and this repeats until some convergence criterion is met.

The prox operator simply refers to this minimization subproblem defined by this algorithm.
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Figure 10: Ilustration of Moreau Proximal Point Algorithm on some function f(x) = |z|. The proximal
operator defines the red tangent simple smooth convex function and finds its minimum

64The subgradient method solves the problem of non differentiability of some objective function f(.) by computing a
subgradient of f(.) at x?, g* € 9f(2*) and computing x*t1 =zt — atg(®) at each iteration t
65Here, the ”y” is used to represent any variable.

36



Above, is an illustration of the Proximal Point Method: for f(z) = |z|, a non differential function.
This is a representation of a single iteration of the algorithm where z(**1) is the minimizer of a
differentiable function defined by the proximal operator.

The second pillar of the proximal gradient descent method lies in the equivalence between the
gradient descent algorithm, expressed as z(*1) = 2 — aVf (2(V), and the minimization of the
Taylor approximation of f(.) aroundz® considering V2f(z) = é[ .

In fact, this becomes clear when solving the Argmin of the Taylor expansion of f(.) around z®):
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Argyminf (") +Vf (x(t))T (y - a;(t)> + i Hy _ 2 )

We find the minimum by equation the gradient of the objective function to zero 0 = V f (m(t) + é (x(t'H) — w(t))
— D) = () _ Vv f (:v(t)), which corresponds to the gradient descent method. Therefore, instead
of employing the gradient descent algorithm, one can iteratively determine the minimum of the Taylor

approximation of the objective function at a specific point until a convergence criterion is satisfied.

Figure 11: Graphical representation of the equivalence between Gradient descent and Taylor Approxi-
mation minimization. Instead of using Gradient Descent, one can minimize the Taylor approximation
(Dotted curve) of the objected function (solid curve). This graph illustrates only one iteration.

To resume, the two pillars suggest: First, that non smooth functions can be optimized by using
proximal operators at each iteration ; and Second that gradient descent on smooth differentiable
functions is equivalent to minimizing the Taylor approximation of our function at each iteration.

Proximal Gradient Descent merges both methods: In fact,For some function f(z) = g(z) + h(z)
with g(.) being convex and differentiable and h(.) convex but non differentiable; Proximal gradient’s
approach involves iteratively minimizing ”sub-problems” formed by the sum of the Taylor approxi-
mation of the convex and differentiable function g(x) and the convex but non-differentiable function

h(z). Concretely; it consists of approaching the problem as if it were a gradient descent minimization
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on some smooth function while keeping the non-smooth function untouched.

2D — argming: (y) + h(y)
Y

. 1
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= argmin_|ly — (z — aVg(=") 3 + h(y)
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This is equivalent to the Proximal operator of h(.) at (z(¥) — aVg(2®)) with a proximal parameter
at. Formally, the Proximal Gradient descent is defined as such:

First initialize z(®) , z® = PrOXy o,y (x(t_l) —a;_1Vg (x(t_l))) , t=1,2,3,..., iterate until
convergence

This hybrid optimization has a faster convergence rate than the standard proximal point method
for non smooth functions (Tibshirani). Hence, whenever, the non-smooth objective function can be
transformed into a composite optimization problem with smooth and non smooth components; it is
preferable to use PGD than PPM for computational speed.

On the other hand, the accelerated proximal gradient descent, incorporates acceleration into the
optimization. Introduced by Nesterov, the Accelerated Gradient Descent is a modification of the
standard Gradient descent method designed to achieve a faster convergence rate. Gradient descent can
exhibit very slow convergence depending on the shape of the objective function %6; This is clearly the
case when the convex objective function has a minimum in a "narrow valley” which causes the gradient
descent to zigzag very slowly towards it 7. In order to mitigate this problem, Nesterov incorporates
memory into the Gradient descent method: For each iteration, the new direction incorporates the
"momentum” of previous directions; this has the effect of tilting ”degenerate” directions to ”coherent”
and ”well behaved” ones. Formally, Nesterov is defined as such: For an unconstrained smooth and
convex minimization problem: Initialize y(*), then compute 2 = y(t=1) — OV f (=) for y® =
z® 4 = (z(® — 2=V} and iterate for t = 1,2,... until convergence.®® Ultimately, this method is
faster than the Gradient descent method.

The Accelerated Proximal Gradient Descent Algorithm; simply incorporates the Nesterov Gradient
descent to the Proximal Gradient descent. Formally, it is defined as such:

Initialize (®) and y(® = z(® ; then compute z(¥ = prox,w, (y*~1 — a®Vg (1)) for y® =
z® 4+ % (.%‘(t) - x(t_l)) ; and iterate for ¢t = 1,2, ... until convergence.

This optimization method is perfectly suited for our optimization problems as our objective func-

66 And the set hyperparameters

670r when a concave function has a maximum in a narrow space

68 Geometrically, Nesterov Gradient descent simply extrapolates the previous direction by some ” memorized” momen-
tum ( depending on previous trajectories); then follows the negative gradient
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tions can be decomposed as smooth and non smooth function; and , importantly each of the non-smooth
functions used in this paper has its own closed form proximal operator. This fact is important, as
Proximal Gradient Descent computes the proximal operator of h(.) at each iteration. (See: Appendix

for Closed form proz(.) of each of the non-smooth functions).
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