
9 Regression Trees

9.1 Regression Trees

Regression trees are essentially recursive binary partitions on some feature space X resulting in a

piece-wise prediction. That is, Trees are equivalent to recursively partitioning the feature space into

two parts each time until obtaining different partitions, each corresponding to a constant prediction 81

.In a 2 dimensional feature space this equivalence between building a tree and partitioning a feature

space can be clearly illustrated.

((a)) Regression Tree. ((b)) Partitioned Feature Space. ((c)) Constant Piecewise Regres-
sion.

Figure 12: Regression Trees can be interpreted in three ways: as trees, as a feature space partitioning,
or as a constant piecewise regression function. I use my dataset to provide a visual representation
using the Earnings to Price Ratio as the factor.

In fact, one can either, perform a recursive binary partitioning on some rectangular (Two dimen-

sional) feature space: That is, I start with the first split , let’s say in X1 = s1 , then in each of the two

defined regions, I split again. Thus in X1 > s1 I split at X1 = s2 and in X1 < s1 I split at X1 = s3

and I repeat the process recursively, until obtaining the desired partition. The resulting feature space

is split in K regions, each corresponding to a constant prediction output. 82 Or equivalently, one can

represent the same result in a tree: the leafs (i.e. the terminal nodes) represent the last partitioned

regions in the feature space, the binary nodes represent the different binary splitting decisions, and

the output of each leaf corresponds to the constant prediction output of each partitioned region.

Formally, we represent regression trees as such: For some design matrix X and a dependent vari-

able Y ; if we have K ;R1, ..., RK ; partitioned regions with each a corresponding piece wise constant

prediction cK , one can define a regression tree model as such : f(x) =
∑k

k=1 ckI (x ∈ Rk) . The model

is thus characterized by two defining parameters: the partitioned regions and the associated constant

prediction output.

Ideally, one would like to find the partitioning that minimizes the squared loss between the observed

81A recursive program is one in which a function, such as Binary Partition, relies on prior, simplified instances of itself.
82Notice, however that I still have not discussed the choice of the splitting parameters and the splitting point (I explain

this below).

44

and the predicted outputs. Two facts emerge, first , knowing the partitioned regions Rk, our model

prediction is the average of the dependent variables in the partition. That is, Agminck(yi − f(xi))
2

⇒ ĉk = ave (yi | xi ∈ Rk)
83. Secondly, it is computationally unrealistic to find such a partition,

as it involves evaluating the loss for all possible partitions,i.e. comparing resulting trees from every

conceivable split and ordering.

Accordingly, I perform a greedy algorithm (Introduced by Breiman,1984 [2]) to solve this problem.

Instead of considering all possible splits, the greedy algorithm, focuses only on a single partition:

Explicitly, our problem reduces to finding the best partitioning feature Xj and point s that splits the

region into two sub regions R1(j, s) = {X | Xj ≤ s} and R2(j, s) = {X | Xj > s} - Using a squared

loss function, we determine the parameters as such :

ArgminXj ,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2
+min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

Accordingly, ĉ1 = ave (yi | xi ∈ R1(j, s)) and ĉ2 = ave (yi | xi ∈ R2(j, s)).

Constraining the problem to a single split each time makes partition now feasible by computing the

squared loss - also called the impurity function 84 - over all features for all split points 85, within a single

level of the tree only. This algorithm facilitates the construction of a regression tree86; nevertheless, it

exhibits certain limitations: By constraining parameter fitting to a single level only, we risk overlooking

scenarios where a sub optimal splitting feature (or splitting point) at a particular location on the tree

could, in fact, contribute to the creation of a more efficient tree overall. The use of a greedy algorithm

neglects the possibility that a partition considered weak at a certain level might be advantageous for

the entire tree. This issue is mitigated by the introduction of ensemble methods explained in the next

section .

In the greedy algorithm, the tree size serves as a hyper parameter. Setting it too high may result

in overfitting, while setting it too low can lead to underfitting. 87. Consequently, it becomes essential

83In fact, assuming that the partition Rk is known; if x ∈ Rk → I (x ∈ Rk) = 1 → f(x) = cK · 1 Accordingly, in
order to find the constant parameter in Rk one need to minimize the mean squared error of the observation and the

constant prediction in the assumed partition region. Argmin
cK

E
[
(YK − cK)2

]
= Argmin

ck

[E (YK − ck)]
2 + V (YK − ck)

= Argmin
cK

[E(YK)− cK]2 + V (cK), we solve this optimization problem by equating the derivative with respect to ck to

zero (Since the objective function is a quadratic derivable convex function); thus,
∂MSE(cK)

∂cK
= −2 (E(YK)− cK) = 0

solving this equation, we get cK = E(YK) . Hence, the optimal output for a squared loss objective function given the
partition space is the average of the dependent variables in that partition.

84The impurity function is a generic function that quantifies the ”purity” of the split. In regression trees, loss functions
are used for this purpose, while in classification trees it takes different forms, notably Misclassification error , cross entropy
or Gini index etc...

85There are different ways to choose which splitting points we should use when evaluating different splitting scenarios.
I choose s values to be the different quantile values of the feature

86For N observations, Greedy Algorithm is O(N2) while the ”Naive” infeasible partitioning is O(2N). Hence, for 100
observations , we need 10,000 operations in a Greedy Algorithm against 1.267×1030 for the naive splitting to decide on
Xj and s

87This is due to the fact that the tree size controls complexity, impacting generalization, approximation, and estimation

45

to regularize the tree size. Various methods exist to achieve this goal. One approach involves defining

a maximum number of observations in the leaves, or establishing a threshold beyond which the mean

squared error at each iteration should not increase. However, I choose not to employ these methods

due to their myopic behavior regarding the subsequent levels of the tree. Instead, I utilize a Tree

pruning approach.

That is, I construct a large tree using the greedy algorithm, prune the tree at some nodes and

obtain a more performing sub tree. Pruning is the act of cutting down the regression tree at a certain

node. There are different ways of approaching this method; one can, for example, perform a ”Reduced

Error Pruning”, which consists of assessing all nodes, and calculate the cost associated with collapsing

each node then proceed to collapse the nodes that result in the smallest increase in mean squared

error. Note: Pruning will always increase the overall mean squared error of the tree as the tree is a

non parametric method and will surely overfit the data if grown large enough (The dynamics of non

parametric models are discussed in the Generalized Additive Models chapter), this is why, we choose

to prune for the smallest increase in the overall mean. The Reduced Error Method is a fast but naive

method as there is no explicit penalty criterion for pruning other than overall mean squared error.

I thus adopt a more interpretable method: The ”Cost-complexity pruning” method introduced by

Breiman et al. (1984)[2], is a tree regularization method that first consists of building a large tree;

by fixing very loose stopping criteria (For instance, choosing a a maximum number of observations

per leaf to be 1, or choosing a large depth condition... The list of methods for building a large tree is

exhaustive), then finding the subtree that has the minimum mean squared error given a penalty on its

number of leafs (its terminal nodes).

Formally, I pick a subtree T ⊂ T0; that minimizes the following Cost function

Cα(T) =

|T |∑
k=1

Lk(T) + α|T |

with Lk(T) = 1
Nk

(yi − ĉk)
2
the mean squared error associated to the subtree; Ĉk = 1

Nk

∑
xi∈Rk

yi,

the constant prediction in Partition k; |T | the total number of leafs of the tree and α the penalization

tuning parameter. Cost complexity pruning involves penalizing the number of terminal nodes, and

finding accordingly the best subtree. The rationale is as follows: As explained, since growing a tree

invariably results in a decrease in the overall mean squared error (as trees ultimately overfit), we

aim to select a subtree that mitigates overfitting. To achieve this, a comparison of various subtrees

is necessary. Considering that a smaller tree inherently yields a higher mean squared error, the |T |

penalty introduces a size-related penalization to the mean squared error of each subtree. Introducing

errors. These dynamics have been discussed in the Statistical Leaning Theory chapter

46

this penalty term provides a dynamic method for comparing subtrees, where the cost of a smaller tree

may be lower than that of a larger one, depending on the tree’s size (or equivalently, its number of

terminal nodes) and the penalty tuning. This method relies on cross validation: The penalization

hyperparameter α is found by picking the most performing one on the validation set.

47

