
9.2 Ensemble methods

Ensemble methods are a collection of methods that consists of combining ”weak” learning methods

into a larger more efficient one. Their primary purpose is to reduce model variance by combining

individual models, rendering them particularly interesting in the context of regression trees.

9.2.1 Random Forest

Random Forest (RF) is an ensemble method applied on regression trees. Before delving into random

forests, it’s essential to grasp another widely used ensemble method upon which RFs are based: notably

”bagging” - also called ”Bootstrap Aggregation”. This method consists of building different models

and averaging them to obtain a more robust model. The different models are built by sampling, M

times with replacement from the dataset, resulting in M datasets upon which M models are built.

By training the model on different datasets, bootstrap aggregation is widely assumed to effectively

diminish the model’s variance. It is thus a suitable method for high-variance and low-bias models

such as trees, and it typically performs bad for high-bias models, like for example linear models.

In fact, as explained in the Generalized additive model chapter , linear models exhibit high bias

asymptotically ; MSElinear = σ︸︷︷︸
intrinsic error

+ alinear︸ ︷︷ ︸
approximateerror

+ O
(
n−1

)︸ ︷︷ ︸
estimationerror

; while non parametric

methods are unbiased asymptotically, MSEnonpara = σ2︸︷︷︸
intrinsicerror

+ O
(
n−4/(p+4)

)
︸ ︷︷ ︸

rateofconvergenceofestimationerror

,

making them ideal for bagging. In addition, another important and more obvious aspect of bagging

is that it mitigates the effect of outliers in the data (Grandvalet , 2002[7]). By bootstrapping with

replacement from the dataset, outliers are weighted less in the final estimation (Asymptotically).

Finally, from a Bayesian point of view, Tibshirani et al. (1997[28]) interpret bootstrap aggregation

by describing the distribution resulting from bagging as an ”approximate non-informative Bayesian

posterior”. This result holds asymptotically. In other words, this means that P (θ|X = data) is

approximately obtained by iteratively bootstrapping P (X = data|θ), without the need of any prior

information.

Random Forest, is an ensemble method applied on regression trees that relies on bootstrap aggre-

gation and a variant of the greedy algorithm. Specifically, M bagged trees are constructed through

iterative sampling (with replacement) of subsets from the original data points. At each iteration, a

tree is constructed 88 using a greedy algorithm, wherein, at each split, only a subset of features is

considered.

Hence, for P total features in the dataset, Random forest method consists of picking randomly

D < P features at each split. This feature selection method is motivated by the consideration that

88on the bootstrapped subset of data points

48

bootstrap aggregation alone may not be sufficient: In fact, from a probabilistic point of view, bagging

results in M independent and identically distributed models with each a variance σ2 and a mean µ,

the average of these models has a variance

Var

(
1

M

n∑
i=1

xi

)
= ρσ2 +

1− ρ

M
v2 (4)

(Refer to footnotes for a detailed explanation 89). This result is a crucial theoretic element in

Random Forest’s defence:

The result suggests that by increasing the number of bagged trees M one can reduce the variance

of the bagged model; however, there will always remain some variance due to the correlation between

the bagged trees ρ ;i.e. the model will always exhibit variance asymptotically due ρ.

Random Forest addresses this by randomly selecting a subset of features at each split, aiming to

reduce the correlation between the different bagged trees. Asymptotically, using RF results in a zero

variance model. However, in practice , the second term in 4 does not cancel out, and hence reducing the

correlation would also have some upward effect on the total variance through the second term. Thus,

instead of looking for the set of bagged trees with zero (or negative) correlation, the focus should be on

finding the optimal balance of correlation that minimizes the total variance of the model. Achieving

this balance involves tuning the model’s feature selection parameters. And in fact, the number of

selected factors is a hyperparameter of random forest method determined through Cross-Validation.

9.2.2 Boosted Trees

I also use boosted trees in this paper. Boosting, is also an ensemble method, where, like for bagging,

different weak learners are combined to form a unique model that performs better. Adaptive boosting

was first introduced by Freund and Schapire (1997)[4]; Their algorithm aimed to construct a robust

model by adaptively combining weak learners. While delving into the intricacies of the algorithm is

beyond the paper’s scope, grasping its rationale proves beneficial. AdaBoost.M1 iterates M times 90 ;

at each iteration, training points are reweighted, and a new model is fitted on the reweighed sample.

The new model is scaled, then added to the one fitted in the previous iteration. The algorithm’s output

is thus the scaled sum of these models. Observations are reweighed based on the associated errors;

89That is because Var
(

1
M

∑M
i=1 xi

)
= 1

M2 Var
(∑M

i=1 xi

)
= 1

M2

[
E
[(∑M

i=1 xi

)2
]
− E

[∑M
i=1 xi

]2]
; with

E
[∑M

i=1 xi

]
=

∑M
i=1 E (xi) = Mµ ; and E

((∑M
i=1 xi

)2
)

=
∑M

i,j=1 E (xixj) = ME
(
x2
i

)
+
(
M2 −M

)
E (xixj); This can

be further reduced by noting that the correlation coefficient of two random variables xi and xj ,ρij =
E((xi−µi)(xj−µj))

σiσj
;

is defined as ρij =
E((xi−µ)(xj−µ))

σ2 for bagged (and hence i.i.d) models xi and xj . This correlation formula implies that

E [xixj] = ρσ2 + µ2. Utilizing this formula, ME
(
x2
i

)
+

(
M2 −M

)
E (xixj) reduces to Mσ2 +M2ρσ2 +M2µ2 −Mρσ2.

Accordingly, Var
(

1
M

∑M
i=1 xi

)
= ρσ2 + 1−ρ

M
σ2 .

90M is a tuning parameter of the algorithm

49

misclassified observations receive higher weights (They are thus more relevant in the subsequent fit)

and model scaling is determined by the training error of the new model on the reweighed training set;

higher errors result in lower weights.

In summary, Adaboost.m1 is a greedy adaptive algorithm to construct additive models using simple

basis functions, taking into account previous errors at each iteration. This is equivalent to building

an additive model f(x) =
∑M

m=1 bm(x), defined as the expansion of some basis function bm(x); using

a forward stage-wise additive algorithm with an exponential loss function. 91. In essence, boosting

methods are all forward stage-wise algorithms as such.

Accordingly, boosted trees are the additive expansion of simple trees (which can be interpreted

as basis functions) fM (x) =
∑M

m=1 T (x; Θm), with Θm representing the tree parameters (R and c)

where Θ̂m = argminΘm

∑N
i=1 L (yi, fm−1 (xi) + T (xi; Θm)) is iteratively evaluated by forward stage

wise algorithm. Using a Squared loss function, the problem reduces to a simple regression tree fitting

problem applied on the residual from fitting the previous model rather than the dependent variable

92. In this paper, I apply a ”penalized” version of the boosted model, by scaling each of the added

models by a shrinking penalty. The logic remains the same, I simply multiply every added model (at

each iteration) by a scalar v ∈ (0, 1). Tibshirani et al. (2001) suggest that by adding the v term, one

could, by analogy with the functional gradient descent method, view the shrinkage parameter as the

learning rate (step size) of the gradient descent.

Why Trees I use trees (and related ensemble methods) in this paper for many reasons. First,

Generalized additive models, even though, as explained previously, are a good compromise with respect

to other non linear models; they may be far fetched in the context of return forecasting as they are

global models whose predictive function is the same across all its domain - which suggests that the

underlying function is defined as a single function. Furthermore, GAMs pose an additional challenge.

Despite their enhanced interpretability due to their additive composition, they abstract the dynamics

of the function. Understanding the dynamics from a generalized additive model is nearly impossible

93.

On the contrary, trees offer a distinct advantage. By recursively partitioning the space into different

regions, the tree defines different predictive dynamics (functions) across different paths that are easily

understandable. Moreover, it is noteworthy that the search for similarities in trees represents a more

robust approach compared to the K-Nearest Neighbors method. While K-Nearest Neighbors focuses

on interpolating and smoothing based solely on the similarity of features, neglecting the dependent

91The forward stage wise algorithm consists of first initializing f0(x) ← 0 and then For m = 1, . . . ,M finding the

best model fm ← argminθ
∑

i L
(
fm−1(x) + bm(x, θ̂), yi

)
for some loss function L(.) and updating by adding to the

previous model fm(x)← fm−1(x) + fm(x)
92In fact Θ̂m = Argmin(y − fm−1(x)− Tm(x))2 = Argmin(resid− Tm(x))2
93And it is worse for Non-parametric smoothing methods where there is no clear distinction of the dynamics between

the different features

50

variable; trees take into account the similarity in both dependent and independent variables. Terminal

nodes in trees can be regarded as neighborhoods in the feature space containing datapoints with similar

responses; consequently, Shalizi (2021) characterizes trees as ”adaptive nearest-neighbor methods.” In

addition, there are many practical reasons that make tree popular forecasting methods: for example,

it is straightforward to see which variables are relevant, it helps making predictions when variables are

missing (If one wants to predict but does not have all features used in the tree, he can simply skip the

missing information , without loss of generality) , it does not assume true smooth underlying function

as the piece wise constant prediction can approximately represent both smooth (approximately), and

non smooth true underlying functions , and finally there is no need for calculations to make predictions,

one can just look at the tree.

51

