
8 Generalized Additive models

A generalized linear model (GLM) is a flexible extension of the ordinary linear regression model and

can represent a variety of distinct regression models. The configuration of a Generalized linear model

is the following :

• A linear predictor η(x) = β0 +Xβ. i.e. covariates are defined as a linear model, upon which is

build the GLM.

• A random component is defined as following some distribution from the exponential distribution

family 69. For example, the ordinary linear regression model defines the random component

ϵ ∼ N(0, σ2), and as a result y|x ∼ N(Xβ, σ2)

• A link function that links between the random E[Y |X] and the covariates. The link function is a

bijection that transforms E[Y |X] to the linear predictor η(x). For instance in a linear regression

µ(x) = β0 +Xβ, the link function is the identity function.

In summary, the Generalized Linear Model is a way to express different regression models based on

some linear predictor assuming some random component and given some link function

I will focus in this paper, on a more generalized version of the Generalized linear models, notably

the Generalized additive model (GAMs) . Generalized additive models are defined as conditional

expectation regressions linked to the sum of arbitrary smooth functions (one for each variable) by a

link function. Formally, it is defined as:

g(E(Y |X)) = β0 + f1 (x1) + f2 (x2) + · · ·+ fp (xp)

where g(.) is the link function; fj(.) are unspecified smooth functions , and m is the number of factors.

fj(.) are arbitrary functions that can change from one predictor to another, provided that it is smooth

70 ; and what makes this model special is that it is flexible: fj(.) can , for example, take the form of

some fully-parametric functions (polynomial regressions, linear regressions etc...) , expansions of basis

functions ( Natural K-splines, Sigmoid basis expansions etc...) , or fully non-parametric smoothing

functions ( Nadaraya-Watson Kernel regressions, K-NN etc...) ... the list is expansive. Generalized

additive models also assume E[Y ] = β0 and E [fj (Xj)] = 0 in order to make the problem identifiable.

Essentially, if we do not assume the following, we end up with ”Concurvity” - The generalization of

collinearity in an additive model framework- that is, there are infinitely many parameters that gives

69Do not confound with exponential distribution. An exponential distribution family is a set of probability distribution
function expressed as fX(x | θ) = h(x) exp[η(θ) · T (x)−A(θ)]

70The smoothness of the functions refers to their continuity in their first and second order derivatives. Hence fj() can
be represented by any C2 function
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us the same regression function. g(.) the link function, is the same as the one defined for Generalized

linear models; however, instead of linking to a linear predictor model it links to an additive model. In

addition; because, under GAMs, η(.) is no more a linear function, the estimation process changes71:

GAMs use instead a ”Back-fitting” algorithm to fit fj()s . Hastie et al. define the back fitting algorithm

as such: First Initialize: α̂ = 1
N

∑N
1 yi, f̂j ≡ 0,∀i, j. Then for: j = 1, 2, . . . , p, . . . , 1, 2, . . . , p, . . .,

f̂j ← Sj


yi − α̂−

∑
k ̸=j

f̂k (xik)


N

1

 ,

f̂j ← f̂j −
1

N

N∑
i=1

f̂j (xij) .

And iterate until convergence criterion is attained 72 (See Backfitting Algorithm section in Appendix

for an explanation of the underlying logic of this algorithm) For Sj some smoothing operator which

we choose according to the fj(.). In other words, the backfitting algorithm sequentially fits each factor

while keeping others fixed. Updating a function involves applying the fitting method to a partial

residual. For instance, if f1(.) and f2(.) are known, we can fit f3(.) by treating the partial residual as

a response in some smooth regression on x3. (Refer to appendix for detailed explanation)

We can clearly see that GLMs are special cases of GAMs, for fj(.) being linear in x, they only differ

in their estimation, in their speed and in their biasedness 73. I introduce both Generalized Additive

Models and Generalized linear models, because in this paper I present a penalized form of GAM which,

if penalized enough, may reduce to a GLM model. Moreover, I chose Generalized Additive models

to represent non-linear models because it is the best suited to my problem; it is a good compromise

between fully parametric non linear models and unstructured non-parametric smoothing methods .

In fact, on the one hand, even though fully-parametric models have been traditionally used in

factor modeling and despite the fact that their estimation error converges quickly as the number of

data increase74. The main problem is that it will always result in an approximation error if the

underlying conditional expectation is not exactly matching the model.

On the other hand, unstructured non-parametric smoothing methods ( Those are regressions that

impose no assumptions on the the shape of the regression function) 75 can asymptotically capture

any true underlying conditional expectation function as their fitting approach is data-dependent, free

71We cannot use linear regression - as we did for GLM - for non-parametric fj(.)s - It does not make sense
72One can either specify a tolerance level, or some fixed maximum number of iterations
73GLM converge faster while GAM are less bias
74For instance, mean squared error ’s convergence of linear models is MSElinear =

σ︸︷︷︸
intrinsic error

+ alinear︸ ︷︷ ︸
approximateerror

+ O
(
n−1

)︸ ︷︷ ︸
estimationerror

(Shalizi,2021), this is derivable by using the Law of iterated ex-

pectations from MSE, essentially, there will always be some approximation error, even if we infinitely increase the
sample size. These MSE convergence property is generalizable to any parametric model ( Shalizi, 2021[23])

75They are generally defined as: E(Y |X) =
∑n

i=1 yiw (x, xi, h) with w(.) some fully non-parametric function of some
tuning parameter h. Kernel regressions or K-NN are notable instances of unstructured non-parametric models
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of any model restrictions. However , the main issue with these methods is that their estimation

error is dependent on p (the independent variables), and fitting these models may fall under the

curse of high dimensionality: Intuitively, for some sample of observations, fitting the model just by

looking at the data becomes increasingly difficult as the number of dimensions increase. Wassermann

(2006)[30], derives the Mean squared error asymptotics of unstructured non parametric methods as

:MSEnonpara − σ2︸︷︷︸
intrinsicerror

= O
(
n−4/(p+4)

)
︸ ︷︷ ︸

rateofconvergenceofestimationerror

, as having no approximation error but

with an estimation-error rate of convergence (to zero) dependent on the number of features i.e. this is

a formalized representation of the curse for dimensionality for unstructured non parametric methods.

Generalized additive models emerge as a perfect compromise between fitting well the data and not

falling in the high dimensionality curse trap: In fact, it is a structured non-parametric method that

uses non parametric smoothing functions fj(Xj) on each of the predictors ; the regression is no more

dependent on p parameters. Rather; what we have with GAMs is P non-parametric functions each

dependent on a single parameter. We thus fit a non parametric function - that minimizes its specific

approximation error - without suffering from a large estimation error due to high dimensionality -

as GAMs smooths P times on 1 dimension. For instance, for a simple GAM on p features, with

f1(X1), ..., fp(Xp) all being smoothing splines, Shalizi (2021) derives MSEadditive − σ2 = aadditive +

O
(
n−4/5

)
76: i.e. there still is some approximation error aadditive as the approximate error combining

all dimensions together has not been tackled by GAM, however, approximation error is better than

what we get for a linear model aadditive ≤ alinear
77 and we do not fall into any dimensionality problem

- the estimation error convergence solely depends on N not P (Note:O(n−4/5) in the formula) Another,

yet weaker, advantage of choosing GAMs is that they are interpretable models: By posing the problem

as an additive one, one clearly see the parts constituting the overall model, and thus conjecture the

dynamics of the model.

For these reasons I chose GAMs to modelize non-linearly the returns with respect to high di-

mensional factors. and choose to model the arbitrary functions with respect to second order splines

with k knots ( i.e k + 1 intervals). The number of knots is a hyper parameter; which I tune us-

ing cross validation. Formally: Each fj(Xj) is modeled as θjp(x) with p(x) a second order spline

defined as β0 + β1xj + β2x
2
j + β3(xj − k)2+ with (xj − k)2+ a truncated power basis defined as

(x − ki)
2
+ =



(x− k1)
2 if x ∈ [k1, k2)

...

(x− kK)2 if x > kK

0 otherwise

Second order splines are chosen in this framework simply

76This derivation requires Taylor approximating the MSE and using Oracle assumptions
77Since Additive models ⊂ Linear models - this has been discussed in the statistical learning theory Chapter
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because they represent standard flexible C2 functions 78 .They are fitted by least squares regression,

hence the smoothing operator Sj in the backfitting algorithm is the squared loss. Concretely, the

Generalized additive model will look like this:

g(E(Y |X)) = θ0 +

P∑
j=1

p (Xj)
′
θj

with g(.) = I the Identity function , P the total number of factors, and I assume that p(z1), ..., p(zj)

are all second order splines with K knots (Notice that there are no feature index to the spline functions

as all splines in this model are all the same for the different features; features differ in their coeffi-

cient θj). While generalized additive models mitigates the curse of high dimensionality, the model

can become highly parameterized, particularly with an increased number of knots, as the number of

parameters, k.(Order of the spline + 1), scales linearly, increasing by a constant factor of 3 for each

additional knot. Given the increased parametrization, which complicates model interpretation, and

considering my earlier discussion on regularization’s role in enhancing generalization, I employ the

Grouped Lasso Regularization method (Yuan, Lin 2005). Grouped lasso is, like Ridge and Lasso, a

Tikhonov Regularization, on an l2 normed (Non-squared) penalty. It thus follows the same rationale

discussed in the regularization section. Grouped lasso has however two distinctive features: First,

its penalty norm is l2 normed thereby inducing sparsity; this is clearly shown in the Lasso Chapter

79. Secondly, and importantly, it penalizes coefficients in batches rather than individually. In this

paper, I utilize this regularization method to nullify all the k-splines associated with each feature if

needed. Specifically, groups are formed by the k coefficients (βk) of each basis function in each pre-

dictor. And formally, the smoothing operator in the back fitting algorithm is now defined as such:

minβ

(∥∥∥y − θ0 −
∑P

j=1 p (Xj)
′
θj

∥∥∥2
2
+ λ

∑P
j=1

√
N j ∥βj∥

)
, With βj = (β1, ..., βK) and N j the number

of elements the coefficients of the basis function of the K spline associated to each predictor. 80

78It is common to choose cubic spline (As far as I know) as they are able to represent complex curvatures smoothly.
Second order splines, are able to represent non linear functions too, however, they can be less efficient in representing
complex curvatures ( e.g. sharp wiggly behaviours) , they are nonetheless used in this paper for computational purposes.
In fact, since I perform GAM on 920 features; cubic splines gives me 3680k parameters per smoothing function while
the second order result in 2760k .

79Note on terminology: Even though ridge regression is commonly referred to as the ”l2” normed regularization; Ridge
is effectively a ”Squared l2” normed regularization. The squared L2 ridge penalty does not result in sparse regularization
whereas the l2, used in Group Lasso does induce sparsity.

80Notice that; like for the ridge and lasso regularization methods, the intercept is not penalized. In addition, stan-
dardization too is required in Grouped Lasso; for the same reasons discussed in the l1 and l2 regularization chapters
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