
5 Dimension Reduction Methods

5.1 Principal Component Analysis

Principal components represent directions, in some vector space determined by some data. In Principal

Component Analysis (PCA), we define the components to represent orthogonal - and hence uncorre-

lated - directions for which the data exhibits some level of variance that spans the data space. For

instance, for some P-dimensional data; we can represent P directions 44 ordered by the amount of vari-

ance they capture. The first principal component corresponds to the direction of maximum variance,

and each subsequent component captures orthogonal directions of decreasing variance.

Ultimately, principal component analysis is used as a dimension reduction technique by picking,

among the PCs, the directions that exhibits most variance, and leaving out other directions.

Briefly, Principal Components estimation can be computed by following these three steps:

1. The initial step involves centering the design matrix. This is done for interpretational purposes

and for simplicity, it is not necessary in practice 45.

2. Points are projected onto the first principal component, and the distance between the points and

their projections is minimized to determine PC1.

3. Additional principal components are determined by selecting directions that are orthogonal to

the initially found PC1. We iterate until the directions span the data space.

Mathematically, given some N -by-P design matrix, one can represent the principal components

by some P -by-P dimensional unit vector w⃗ 46; the points in the P -dimensional feature space are

defined as −→xi ; the projection of −→xi on the PC is (x⃗i · w⃗) w⃗ 47 and the distance between the point

and its projection - also called the residual - is ∥−→xi − (w⃗ · −→xi) w⃗∥
248 . As mentioned, principal com-

ponent analysis ultimately aims at minimizing the mean squared error of the residuals: MSE(w⃗) =

1
n

∑n
i=1 ∥x⃗i∥2−(w⃗ · x⃗i)

2
;49 Using matrix manipulations, one can prove that this mean squared residual

44That spans Rp
45That is because centering X, allows us to interpret XTX as the covariance matrix, which then permits the eigende-

composition of the XTX matrix. I will discuss this later in the my analysis of PCA estimation
46w⃗ represent the directional vectors of the principal components. Its dimension is P -by-P as it represents P latent

dimensions in some P dimensional feature space
47That is; we compute the dot product between −→xi and

−→w , and since −→w is a unit vector, we get a scalar that represents
the value on −→w which −→xi gets projected to. To get the actual vector on which −→xi gets projected, we multiply the inner
product by the directional vector −→w .

48The squared norm is used instead of the absolute value, because we want a differentiable residual
49That is because the residual can be reduced as such∥∥−→xi −
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minimization is equivalent to maximizing the variance of the projections σ̂2 (w⃗ · −→xi) (i.e. the variance

of the distance between the origin and the points’ projection) ,which, in turn, is dependent on the

covariance matrix v = XTX
N of the design matrix 50 51 Principal Component Analysis can thus be

mathematically summarized as performing:

Argmaxww
T vw such that wTw = 1

That is, we maximize the variance of the projections wT vw such that the direction vectors defining the

principal components are unit vectors. This can be expressed as a Lagrangian problem : L(≾, λ) ≡

≾T≿≾ − λ
(
≾T≾− 1

)
Interestingly, we get that: vw = λw : Principal components are thus the

eigenvectors of the covariance matrix v = XTX
N , with λ ≥ 0 the corresponding eigenvalue matrix

52. Since the covariance matrix is symmetric then its eigenvector matrix is orthogonal; thus w ,

the principal components’ directions, are the eigenvectors of the covariance matrix that spans the

whole p-dimensional space and λ corresponds to the magnitude of variance in the direction of each

corresponding eigenvector. Hence, the (PC1) defined as the principal component along which the the

data exhibits the highest variance level, is the wj for which λj is the highest - the same logic follows

for subsequent PCs.

Dimension reduction using Principal Component Analysis consists of choosing the most relevant

direction among all the different directions. That is, for some P dimensional data space we would like

to find a Q dimensional subspace - defined by a subset of orthogonal PCs - that summarizes best the

data ( More specifically , we would like to find the number of eigenvalues, Q) . There are different

ways to achieve this: One can for example compute the R2 ≡
∑q

i=1 λi∑p
j=1 λj

metric that quantifies the ratio

of variance explained by the subset of Principal components over the total variations in our model 53

; graph a scree plot of R2 with respect to λ and choose the lambda according to the shape of the plot

54; however this method is not rigorous. Instead, one can also treat Q (or, equivalently, the number of

since w⃗ · w⃗ = ∥w⃗∥2 = 1.
50MSE(w⃗) = 1

n
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i=1 ∥x⃗i∥2 − (w⃗ · x⃗i)

2 = 1
n
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i=1 ∥x⃗i∥2 −

∑n
i=1

(
w⃗ · −→xi

)2)
the first term is independent of w , it is

thus not relevant to our Minimization problem , we end up with − 1
n

∑n
i=1

(
w⃗ · −→xi

)2
; Minimizing a concave function is

equivalent to maximizing a convex one, hence, we will instead maximize 1
n

∑n
i=1

(
w⃗ · −→xi

)2
. Since Var[X] = E[X2] −

E[X]2 ; we decompose the MSE Problem: as such
(
1
n

∑n
i=1
−→xi · w⃗

)2
+ σ̂2

(
w⃗ · −→xi

)
; and since the X is centered the first

term cancels out and we end up by maximizing the variance of the projection: σ̂2
(
w⃗ · −→xi

)
. Minimizing the residuals is

thus equivalent to maximizing the variance of the projections. In turn, the variance of the projection can be expressed with

respect to X’s covariance matrix: σ̂2
(
w⃗ · −→xi

)
= 1

n

∑
i

(−→xi · w⃗
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= 1
n
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n
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51This equivalence between residual minimizing and variance maximizing can be also demonstrated by the Pythagorean
theorem: Consider for simplicity finding PC1 only: since xis are fixed and since the projections (x⃗i · w⃗) w⃗ form a

triangular rectangle, we apply the Pythagorean theorem:

(x⃗i · w⃗) w⃗︸ ︷︷ ︸
A


2

+
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)
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B


2

=
[
x2
i

]︸︷︷︸
C

; Since A is fixed

any increase in B corresponds to a decrease in C and vice versa.
52Since the elements of covariance matrices are always positive. Then the eigenvalues will be positive
53This metric is ∈ [0, 1]; The bigger it is the more is the sub-model representative
54One can choose the λ , on the ”elbow” of the scree plot. That is the point above which the screen plot does not
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eigenvalues) as a hyper parameter of the model and use cross validation for optimal selection ( Detailed

illustration is available in the empirical analysis chapter ).

Principal Component Regression is simply a linear regression method applied on the Principal Com-

ponents of the predictors. This method is used mitigate the problems of ill-posedness and overfitting

already discussed ; by using a subset of principal components. Instead of using a penalized Lp regular-

ization method, regularization is explicit and is done prior to fitting. This method solves overfitting,

because, as for lp regularization methods, we reduce the complexity and hence control overfitting by

choosing a subset of predictors. And ill-posedness, because, by applying PCA and selecting a subset

of features, we mitigate some issues related to ill-posedness; Notably, linear dependence in the Design

matrix is automatically corrected as the Principal components are uncorrelated. In addition,choosing

a subset of predictors can solve underdetermined ; P >> N ; design matrices.

Principal Component Regression first requires finding Q Principal Components using PCA. The

subset of principal component spans a ”latent” feature space. PCR consists of performing a linear

regression using the new latent factors as covariates. Concretly, after identifying the orthogonal prin-

cipal components (PCs), we perform a linear regression in a space defined by PC1, ..., PCQ. In this

transformed space, each point from the original feature space is now represented by coordinates deter-

mined by their projections onto the PCs. The resulting Q-dimensional estimated parameter can then

be projected back to the original P - dimensional space by multiplying it with wQ
55 .This multiplication

is intuitive when considering wQ as a Factor Loadings, transforming latent factors to observed ones

(This interpretation of wQ as Factor Loadings is typical of Factor Analysis and Probabilistic Principal

Component Analysis, however I will not delve into these concepts as they are beyond the intended

scope of this study ). In order to test/tune this regression, the testing data ( i.e. the testing design

matrix) is regressed on the already retrieved PCs.

Principal Component Analysis is widely used in high dimensional factor modeling; However, there

exists a spectrum of efficient alternative dimension reduction techniques. The Probabilistic Principal

Component Analysis (PPCA), for example, is a method derived from PCA that assumes a latent

variable model with probabilistic assumptions on the latent variable. Factor analysis, for instance, is

another ubiquitous method, that finds latent factors similar to PPCA, but assumes a non-isotropic

Gaussian distribution for the covariance matrix. Fourier Analysis, for example, interprets the data as

the sum of Fourier basis functions to compute latent factors. The Wavelet decomposition method too,

is another notable feature selection method, where wavelets functions are exploited using topological

methods to determine the latent components etc...

exhibit sharp variations
55Note, wQ the principal components directional vector - or equivalently, the eigenvector matrix - is a matrix that

defines Q dimensions in a P -dimensional space. It is thus a P -by-Q matrix, defined as a transformation from RQ → RP .
By multiplying βQ by wQ we are projecting the matrix to the original P dimensional space.
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Principal Component Analysis, however, remains the most documented method in asset pricing

feature selection applications, because it is interpretable, has applications in pure linear algebra, and

importantly, because it provides an ordered list of Principal components: Unlike other dimension

reduction techniques where the ”relevance” of one latent dimension with respect to another is not

explicitly indicated; PCA provides an ordered list of uncorrelated dimensions based on the level of

variance in each PC direction, which facilitates dimension reduction.

One major drawback of Principal Component Analysis, is that while the resulting Principal Com-

ponents (PCs) are uncorrelated, they are not guaranteed to be statistically independent.56 Although

the resulting PCs from PCA are linearly independent orthogonal directions, ensuring null correlation

when feature points are projected onto them, this does not imply statistical independence. In fact,

a null correlation is a second order degree of independence, while statistical independence can imply

higher orders of dependencies. From an information theory point of view, for example, one can argue

that, correlation ”does not reflect the information distance” between two variables (Taleb, 2023) [27].

It’s important to note that variables can be both statistically independent and uncorrelated when

exhibiting only second-order dependence, but this is unlikely in the case of the features used in this

dataset, given their intricate nature and their complexity. To address this limitation, I perform another

dimension reduction method that specifically aims at finding higher orders of statistical independence

between the latent factors.

5.2 Independent Component Analysis

Independent component analysis is a blind source separation method typically used in the field of

signal processing in order to retrieve statistical independent sources of some set of signals (See ap-

pendix, for a graphical representation of ICA). I use Independent Component Analysis to retrieve

statistically independent factors. Statistical independence is a strong measure of dependence57: It

quantifies how much the occurrence (or non occurrence) of an event affects the occurrence (or non

occurrence) of another. We define X1, ..., XN random variables to be ”statistically independent” when

P (x1, . . . , xN ) =
∏N

i=1 P (xi).

The independent component analysis is built upon the following framework: Consider some ob-

served multidimensional data represented by x (P-by-N) , to be some linear mixture of statistically

independent sources s of dimension Q-by-N. Thus, x = As with A a P-by-Q linear mixing matrix with

both A and s unknowns. This method assumes that what we observe is an unknown linear transfor-

56Uncorrelated variables implies linear independence . While statistical independence, between variables X and Y for
instance, implies that f(X,Y) = fX(X) · fY (Y): This means that none of the variables explains the other. Clearly,
statistical independence is a much stronger assumption

57This is in contrast with the correlation metric. Which is considered a weak dependence measure from a statistical
point of view
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mation of unknown statistically independent latent factors; and the goal of ICA is to retrieve ŝ = Wx

with W = A+, and hence obtain the statistically independent source factors defining the observed

features. The issue with x = As however, is that it is an Ax = b problem with both X and A being

unknown, and this is, a priori not solvable.

Independent Component Analysis, proposes a strategy to find W (and hence retrieve ŝ): First,

Consider the Singular Value Decomposition of A: A = UΣV ⊤,which can be studied as a rotation-

stretching-rotation transformation, and its ”inverse” 58 expressed as W = V Σ−1U⊤

Figure 6: Graphical representation of the Singular Value Decomposition of the linear mixing matrix
A, as well as its Pseudoinverse W . Hence, x = As can be viewed as an SVD transformation from x to
s (and vice versa)

Importantly this Singular Value Decomposition of the mixing matrix illustrates the idea that x = As

can be viewed as an SVD transformation from s to x (and vice versa). Independent Component

Analysis’s strategy unfolds in two stages: First, one needs to study the covariance of the observed

data to find U and Σ. Independent Component Analysis assumes demeaned variables and introduces

a crucial assumption: whitened covariance of sources, i.e. E(sT s) = I.

By doing so, we have simplified our Ax = b problem : In fact, we can now express the covariance of

our observed variable E
(
xx⊤) = UΣ2U⊤ independently of v and s 59 and since E(xxT ) is a symmetric

matrix and it is always diagonalizable such that E
[
xx⊤] = EDE ,with E and D corresponding to

the eigenvectors and eigenvalues matrices. Thus, by imposing the whitening assumption we have now

found both U and Σ such that ŝ = Wx = V Σ−1U⊤x gets reduced to ŝ = V D− 1
2ETx with now only

V being unknown.

Independent Component Analysis’s second stage is to exploit the statistical independence of sources

in order to find V . In fact,V is a rotation matrix determined by some angle parameter θ (In a two

dimensional space ,for instance, a rotation matrix V takes the form

 cos(θ) − sin(θ))

sin(θ) cos(θ)

 where θ

is the only defining variable). In the ŝ = V D− 1
2ETx problem, V represents the last rotation from a

58”Pseudo-inverse” is a technically better suited term since W is a double sided inverse if and only if it has Full Rank
. I use the term ”inverse” for simplicity

59E
(
xx⊤)

= E
(
Ass⊤A⊤)

= E
(
UΣV sstV ΣU⊤)

= UΣV ⊤E
(
ss⊤

)
V ΣU⊤, since V T = V −1 (Since it is an orthogonal

matrix) and E(ssT ) = I then E
(
xx⊤)

= UΣ2U⊤
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rotated-then-stretched source s to x (refer to figure ). Hence, computing V can be viewed as finding

the angle parameter of the last rotation that gives us statistically independent sources. ICA exploits

the independence assumption to find the angle: Finding V can be formalized as finding θ such that

some metric of independence is minimized. Information theory provides us with this metric: In fact,

mutual information is an adequate metric here as it computes the information distance between two

distributions; i.e. quantifies the amount of information one variable provides about another; and

is thus a good proxy for statistical independence. However, since sources are usually more than

two, ”multi-information”, a generalization of the mutual information, is better suited. Defined as

I(y) =
∫
p(y) log2

P (y)∏N
i=1 p(yi)

dy, this metric is an ideal proxy to statistical independence. Now, one can

find rotation matrix V and solve ICA by minimizing I(ŝ) where ŝ = V D− 1
2ETx . That is, finding

the θ such I(ŝ) is minimized. This minimization problem is not trivial, a reduced form of I(ŝ) is used

instead 60. Thus V = Argminv
∑

i H
[(

V D− 1
2E⊤X

)
i

]
. Having found V , one can find W and s the

statistically independent factors.

In this paper, observations x are the features ( Those are P , N dimensional feature vectors) and

sources s represent the reduced latent features ( hence , s is a Q by N matrix). The linear transformation

A, essentially transforms the sources which are points in the RQ reduced latent feature space to signals

( Those are the points we observe in the original feature space) in a new separate Rp space spanned

by the known original features. A’s columns thus represent the latent direction of the observations in

the original feature space.

While principal components are orthogonal, the independent components resulting from an ICA

are not ( Unless sources dependence is limited to second order ). This can be clearly illustrated in a 2

Dimensional ICA; where the signals are two dimensional features (Above 3 Dimensions this cannot be

graphically illustrated). Below is a graphical representation of the difference between PCA and ICA,

using my dataset, on two factors.

60The reduced form is obtained by noting that the multi-information metric can be expressed as I(y) =
∑

i H [yi] −
H[y], thus I(ŝ) =

∑
i H

((
V D− 1

2 ETX
)
i

)
− H

(
V D− 1

2 ETX
)
. Given the following entropy property: for any

continuous random variable X and transformation A the differential entropy H(AX + b) = H(X) + log|A|. Then

I(ŝ) =
∑

i H
(
V D− 1

2 E⊤x
)
i

)
−

(
H

(
D− 1

2 E⊤x
)
+ log2 |V |

)
, since det(V ) = 1 ( Property of a rotation matrix) then

log2 |V | = 0 and since D− 1
2 E⊤X is constant and independent of V we can neglect it. We end up with a simplified

version of I(ŝ) : I(ŝ)|simple =
∑

i H
(
V D−1/2E⊤X

)
i

)
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Figure 7: Graphical Representation of PCA vs ICA using a subset of Factors; notably Share turnover,
Earnings to Price Ratio and the Term Spread on returns between 2001 and 2020. The Latent directions
are different. In this example, Independent Components seem more relevant as they represent better
the data.

((a)) Independent Component Analysis
Recovered Signals

((b)) Principal Component Analysis Recovered
Signals

Figure 8: Principal Components vs Independent Component Tested on a subset of the Dataset

This application of ICA on a subset of the data is indicative of the power and potential relevance of

this method relative to the PCA. In fact, one can see that the PCA might not be particularly effective

for orders of correlation above 2 as the above data seems to exhibit.

As for the Principal Component Regression, I use the Independent Components found in ICA as

covariates of a linear regression. And as for PCR, the IC-based regression model is tuned on the valida-

tion set by changing the Number of Independent Components. However, the main drawback of ICA, is
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that the independent components are not explicitly sorted with respect to their relevance , unlike PCA

(This is, in fact, is the reason for which PCA is ubiquituous in Dimension reduction methods applica-

tions). ICA provides no indication of the relative relevance among subsets of independent components,

and trying for different combinations is computationally infeasible 61. I thus use the power data method

proposed by Hendrikse et al. (2007)[10] . The rationale is as follow: The variance of the signals (i.e.

the observed features ) can be expressed with respect to the different independent component contri-

butions. In fact, for some 1-Dimensional signal ( P-by-1 ) we can express the variance of standardized

signals as V ar(X) = E(X2) =
∑P

i=1 E
[
x2
i

]
=
∑P

i=1 E
[
(ai · s)2

]
=
∑Q

j=1

{
E
[
s2j
]
·
∑P

i=1 a
2
i,j

}
for P

the number of signals and Q the number of latent sources 62. Hence, I compute for each j ∈ {1, Q},

(E
[
s2j
]
·
∑P

i=1 a
2
i,j) and choose the component j for which the contribution is the highest.

61For my dataset comprising 912 factors, testing all different of features combinations requires
∑912

k=1

(
912
k

)
itera-

tions. This is infeasible
62Note: In this paper, the signals are multidimensional. I use 1-Dimensional signals for simplicity
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