
4 L1, L2 and Elastic Net Regularizations

Given the underlying asset pricing theory explained above, linear models hold considerable relevance in

the context of empirical asset pricing. I use them not only for theoretical reasons but also for practical

applications. In fact, linear models are Taylor expansions of non linear parametric models. This is

useful in a setting as complex as return forecasting: By acting as the most lenient approximation in

a highly intricate setting, linear models emerge as optimal amidst unknown models. In the context

of high dimensional factor modeling however, standard linear models are not adequate. Therefore, in

this section, I introduce regularization methods tailored for linear models, allowing their application

in high-dimensional settings. Regularization serves two main purposes: Preventing over fitting, and

solving ill-posed problems. Both issues are fundamental in Returns forecasting given that we are

searching for the model that generalizes best to unseen data using limited data 25 . I will tackle both

approaches to regularization and propose three regularization methods Ridge, Lasso and Elastic Net

to remedy the problem.

4.1 Regularization and Overfitting

As explained, finding the best predictive model is equivalent to finding the hypothesis space ( or

strategy) that generalizes best out of sample. Regularization introduces the idea of constraining

the hypothesis space. Essentially, it defines a complexity measure Ω : F −→ [0,∞) and restricts

the hypothesis space to some level of complexity defined by Ω(F ). Formally, For some hypothesis

space F And a complexity measure Ω(F ), we reduce the hypothesis place to a subset of hypothesis

F = {f ∈ F | Ω(F ) ⩽ r} For some level r of complexity. Complexity measures are defined as Lp

Norms, such that
l0 complexity: Ω(f) = # of Non zero coefficients

l1 ’Lasso’ complexity: Ω(f) =
∑p

i=1 |wi|

Squared l2 ’Ridge’ complexity: Ω(f) =
∑p

i=1 wi
2

Complexity, given a linear regression, is defined as the degrees of freedom of parameters. The more

free to vary are the parameters, the more complex is the model and vice versa. Hence, constraining

the hypothesis space by some complexity measure reduces the models complexity. Having defined

the framework, regularization is defined as an Empirical Risk Minimization problem restricted by a

subset of model’s hypothesis space. Ivanov regularization (IR) Formalizes clearly this idea: For some

complexity measure defined as an Lp norm and a tuning parameter r > 0 defining the complexity

level. We define Ivanov regularization as : minf∈F

[
1
N

∑N
i=1 l (yi, f (xi))

]
such that Ω(F ) ≤ r. By

considering r as a hyper parameter, IR incorporates the models complexity to the minimization prob-

25Limited data will restrict our problem to an ill-posed one
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lem: Not only empirical risk is minimized, but complexity is also adjusted so that model generalizes

best on some validation set. A more common regularization is the Tikonov regularization (TR) : For

some complexity Ω(F ) defined by an Lp norm and a tuning parameter λ ≥ 0, TR is defined as :

Minf∈F
1
N

∑N
i=1 l (yi, f (xi)) + λΩ(f). Tikhonov regularization is equivalent to Ivanov regularization

for certain loss functions and for certain complexity measures. Importantly, equivalence holds for both

Ridge and Lasso regressions( Oneto et al. [20]).IR gives a clear idea of what’s happening under the

hood, while, TR is an easier to solve, unconstrained, minimization problem.

In summary, Ridge and Lasso regressions represented by Tikhonov regularization, express the idea

clearly formalized by Ivanov regularization: That is, finding the best empirical risk minimized model

by cutting down the hypothesis space from F to Fr ; i.e. by reducing the complexity level. We now

have a clear picture of how regularization controls overfitting:

Recall the approximation error r (s∗)− r0 which is inversely proportional to changes in complexity;

the estimation error r(ŝ) − r (s∗) which, along the generalization error ∥r̂(ŝ) − r(ŝ)∥p have positively

proportional bounds with respect to complexity; by cutting down the hypothesis space and hence by

controlling model’s complexity, regularization ”controls” overfitting by trading off generalization and

estimation error for approximation error (Overfitting can thus never be completely eliminated) 26

In forecasting returns and in predictive models in general, overfitting constitutes a fundamental

issue; hence, regularization appears as a natural alternative to Simple ordinary least squares Factor

modeling used traditionally.

4.2 Regularization and Ill-posedness

In addition to over fitting, ill-posedness is a customary issue in Factor modeling, i.e we almost al-

ways need to solve a problem where either the solution does not exist or the number of solutions is

infinite. In fact, factor modelling is fundamentally an Ax = b problem whereby A is generally not

well determined. 27 Ill-posed systems are either due to over determined systems, those are typically

the case in classical Factor modeling with P factors and N Returns such that P¡¡N; or due to under-

determined systems: Those are typical in high dimensional machine learning applications whereby

the number of features surpasses the number of observations; P¿¿N. In addition, Ill-posedness may

also be the result of (Multi)-Collinearity or Near-(Multi)collinearity in the design matrix when two

or more columns (or rows) vectors are linearly dependent (or nearly linearly dependent). Note: an

26Along this conclusion we also deduce from statistical learning theory that as the number of observations N increase
we want less and less regularization. In fact, regularization increases approximation error and decreases estimation error;
the speed at which approximation errors changes is independent of N⇒ O(1) while the estimation and generalization

error bound depends on N (Assuming Rademacher complexity), we find that the bound ≤ O

(√
lgn
n

)
Thus, one should

regularize less as N increases.
27Note, in the context of factor modeling A represents the design Matrix - or ’the factor Matrix- , b the returns vector

and X the coefficients.
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underdetermined system implies multicollinearity in the design matrix 28 ; however, Multicollinearity

does not strictly reduce to an underdetermined system it also may result in an overdetermined one 29.

Importantly: Multicollinearity implies ill-posedness of the system (See appendix for more information

about multicollinearity evaluation measures ).

Classical asset pricing is mainly concerned with the issue of over determined systems, this paper

however deals with both over and under determined scenarios as high dimensional Factor models are

explored.

Typically, from a classical linear algebra point of view, ill-posed problems are solved by finding

the x that minimizes||Ax − b||2. Laub (2005) [12] provides the general solution to this least squares

problem as such: For A ∈ RN×P&b ∈ RN×K , the solution to the least squares problem is:

XLS = A+b+
(
I −A+A

)
Y (3)

for some arbitrary vector Y ∈ RP×K and with A+ the Moore-Penrose Pseudo Inverse of A. Hence,

we can always find a solution xLS For any Ax = b problem as a function of the pseudo inverse.

The pseudo inverse is a generalization of the two-sided inverse 30that applies on any Matrix whether

singular or rectangular or Multicollinear etc... It is not exactly an inverse but its properties resemble

that of an inverse 31 and is defined as A+ = V

 S−1 0

0 0

U⊤ - which is obtained by exploiting

the Singular Value decomposition of A 32 . By employing the pseudo inverse one can always find a

unique (sometimes approximate) solution for ill-posed problems: In fact, using 3 we will either get

a unique solution. Or infinitely many solutions and accordingly choose the minimum norm solution.

For instance for some under determined system Ax = b we get XLS = A+b + (I −A+A)Y infinitely

many solutions, we can chose however a unique approximate solution: the minimum-norm solution

by choosing XLS = A+b such that Y = 0 33 In this sense, by utilizing the Pseudo inverse, one can

always get, an approximate unique solution no matter how ill-posed the system is: This is the standard

28If A (N × P ) has P >> N , this implies multicollinearity by the rank nullity theorem. See Multicollinearity section
in appendix for proof

29

(
1 2
2 4

)
x =

(
1
2

)
is an example of multicollinearity that reduces to an underdetermined system and(

1 2
2 4

)
x =

(
3
4

)
is an example of multicollinearity that reduces to an overdetermined system

30The two-sided inverse, is actually what we refer as the ”inverse” in general. We define the 2-sided inverse of some
matrix A as G = A−1 : GA = AG = I

31For some matrix A, those are, for instance, some of the main ”inverse-like” properties of the Pseudo Inverse G=A+:
AGA = A
GAG = G
(AG)T = AG
(GA)T = GA

......

32There are also closed forms for A+.For example,for A having full row rank A+ = A⊤ (
AA⊤)−1

and for A having

full column rank A† =
(
AA⊤)−1

A⊤ )
33See Least Squares Solutionappendix for graphical representation
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approach to ill-posedness in linear algebra.

Figure 2: This Chart shows how using A+ can always result in a unique (approximate) solution. This
representation builds upon Strang’s four fundamental subspaces of linear algebra to represent different
reactions to ill-posedness.

Regularization as an alternative :

This ”standard” method for solving ill-posed systems is ubiquitous 34 ; it however suffers from

two major drawbacks. From the one hand, using the A+ to compute the solution, does not directly

address the issue that is causing ill-posedness (Multicollinearity for instance); but rather, solves the

problem in a generic manner. Second, and most importantly, computing the Pseudo inverse can be

computationally expensive for large matrices, as it requires computing the eigenvectors/eigenvalues of

the matrix and the reciprocals of its singular values. For a large and sparse design matrix A, as it is

in this paper, this may be practically very challenging. Hence, for interpretabilty and computational

reasons, one ought to find alternatives to Pseudo-inverse; Regularization emerges here as a natural

solution.

Instead of exploiting the singular value decomposition of A, Tikhonov regularization solves ill-posed

problems numerically by controlling the norm of ||x|| while minimizing ||Ax − b||2 ;and is formally

defined as ArgMinx ||Ax− b||2 + λ∥|x||p. This method has also its limitations (which I discuss in the

end of this section) but it is much less computationally expensive and more natural than the pseudo

inverse solution. I will present three different expressions of the Tikhonov regularization and explain

how I will use them in my paper:

First, the Ridge Regression (RR) is expressed as a Tikhonov regulatization with a squared l2 normed

penalty. Explicitly, Ridge is defined as: ArgMinx ||Ax− b||2 + λ∥|x||2 , with λ a tuning parameter > 0

34Notably, many programming libraries, do incorporate this logic into their estimation algorithm for linear models.
Hence, when fitting a linear model - with some ill-posedness resulting in under determined systems (for instance with
a mutlicollinear matrix A , or using a design matrix with more features than observations...) we can still get a result.
This solution is actually the approximate solution found by using the Moore Penrose pseudoinverse and picking the least
norm solution.
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,which translates in our linear regression framework into :

β̂ridge = argmin
β


N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

+ λ

p∑
j=1

β2
j


We have already seen in the previous section that - since Ivanov and Tikhonov regularizations are

equivalent under ridge regression - we can express Ridge in a more ”intuitive and interpretable form”

:

β̂ridge = argmin
β

N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

subject to

p∑
j=1

β2
j ≤ r

We can now clearly see how Ridge regularization essentially constrains the coefficients to some squared

norm. Ridge regularization requires that the predictors are standardized in order to prevent an unfair

shrinking between them. In fact, Ridge constrains the size of the coefficients using a squared l2 norm:

s.t. β2
1 + ...+ β2

p < r ; if one (or more) of these variables is scaled differently than the others, this

will be reflected in the magnitude of βs and induce unfair penalisation; we mitigate this problem by

standardizing all factors. Consequently, the intercept is not penalized by ridge 35. The estimation

is a two steps procedure : After standardizing the predictors, one should first set the intercept as ȳ

then estimate the other coefficients by ridge penalization. This regularization method has a closed

form 36 : β̂R =
(
X⊤X+ λI

)−1
X⊤y . We can clearly see from the closed form solution how ridge

mitigates ill posedness by adding to the Gramian matrix a diagonal matrix. For ill-posed systems due

to multicollinearity, the Gramian matrix is singular, adding to it a diagonal element transforms it to

an invertible matrix ( Non-singular).

As explained Ridge solves ill-posedness, accordingly, one can prove algebraically, using the Singular

value decomposition of X, that the Ridge regression is nothing more than some scaled version of the

pseudo inverse solution which I introduced previously. Concretely, Setting aside algebraic manipula-

tions 37 , ridge regression estimators can be written as β̂ridge = V
(
Σ2 + λIn

)−1
ΣU⊤Y ; while, the

”pseudoinverse” solution in the context of a linear regression is βpseudoinverse = X+Y = V Σ−1UTY =

35For some β0 +
∑

βjXj regression model with standardized (more precisely centered) predictors we get E[Y ] = β0.
Thus for estimation purposes, we do not penalize the intercept and we require it to be Ȳ

36The closed form solution of ridge regression is found by simply deriving with respect to β the objective function .
This is feasible as the function is convex and involves a simple quadratic function

37Using Singular Value decomposition and simple algebraic and matrix manipulations; one can prove:
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V
(
Σ2
)−1

ΣU⊤Y 38 . Comparing both formulae we clearly see that the ridge estimator is equivalent

to a scaled pseudoinverse estimator by Σ2

Σ2+λIn
∈ [0,1]. For λ = 0 both ridge and pseudoinverse co-

efficients are equivalent, and as the penalty term λ increases, the ridge coefficient converges to 0. In

addition, expanding the last ridge estimator formula, β̂ridge = Σ2

Σ2+λIn
βpseudoinv =

{
s2i

s2i+λ

}
βpseudoinv

39 one can infer the dynamics of the ridge regression:Ridge estimator shrinks as the squared singular

values increase, and since the Since Σ2 =
{

s2i
s2i+λ

}
is the covariance matrix of the demeaned predictor

X 40, and because its columns are indicative of the amount of variance within each principal compo-

nent; Ridge regression is essentially, a regularization method that penalizes smoothly 41 low-variance

Principal components directions.

The lasso regularization is a Tikhonov regularization method with a l1 normed penalization; which

is defined as ArgMinx ||Ax − b||2 + λ∥|x||1. In the particular context of linear regression, lasso is

formalized as : β̂lasso = argmin
β

{
1
2

∑N
i=1

(
yi − β0 −

∑p
j=1 xijβj

)2
+ λ

∑p
j=1 |βj |

}
. Or equivalently as

an Ivanov regularization :

β̂lasso =argmin
β

N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

subject to

p∑
|βj | ≤ t.

The same rules of estimation apply on Lasso Regression. The estimation procedure is done in two

steps : First we compute the intercept, then estimate the other coefficients. However, Lasso does not

have a closed form solution, as the objective function is not differentiable. There are different numerical

methods that solves this optimization problem, I propose, the accelerated proximal gradient descent

method which I explain in details in the Numerical Methods chapter. Lasso Regression is widely used

in asset pricing modeling primarily due to its inherent feature selection capability 42 making the model

β̂ridge =
(
X⊤X+ λIp

)−1
X⊤Y

=
(
VΣU⊤UΣV⊤ + λIp

)−1
VΣU⊤Y

=
(
VΣ2V⊤ + λIp

)−1
VΣU⊤Y

=
(
VΣ2V⊤ + λVV⊤

)−1
VΣU⊤Y

= V
(
Σ2 + λIn

)−1
V⊤VΣU⊤Y

= V
(
Σ2 + λIn

)−1
ΣU⊤Y

38We have discussed the pseudoinverse previously from a pure linear algebra point of view using Ax=b. In the context
of linear algebra, nothing changes, but instead of writing A we write X,our factor matrix, and instead of x we write β
the coefficients matrix and finally instead of b we write Y. Thus x = A+b is written as β = X+y ( Refer to Figure R1 -
for more information)

39For s2i the singular values the ”stretching” Sigma matrix
40Using the SVD of X ,XTX/N , the covariance matrix is equal to VD2VT .Since, the covariance matrix is symmetric,

then the V and D2 matrices correspond to the covariance matrix’s eigenvectors/values. This is an important result in
Principal component analysis; whereby the eigenvector and eigenvalues of the covariance matrix of the demeaned X are
indicatives of the PCs and their relevance; it is reviewed in the following chapters

41Penalty is smoothed by the tuning parameter λ
42Feature selection involves the elimination of certain features while retaining others
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Figure 3: Illustration of different penalty contours
∑p

j=1 |βj |q ≤ 1 for different values of q on a 2
dimensional parameter space. As q decreases the contour of the penalty promotes increasing sparsity
in the coefficients.

more interpretable.

Specifically, Lasso Regression employs a least squares approach, effectively nullifying ”irrelevant”

coefficients43. One can interpret the sparsity of the result both algebraically and graphically. In fact,

assuming a linear model with an l1 penalization,the objective function of our problem is min yT y −

2yTxβ̂ + β̂xTxβ̂ + 2λ|β̂|. For β̂ > 0, the solution has a closed form β̂ =
(
yTx− λ

)
/
(
xTx

)
which

decreases as l1 regularization tuning parameter λ increases until reaching β̂ = 0; and for β̂ < 0,

the solution has also a closed form, β̂ = (yTx + λ)/(xTx) which increases as the lasso regularization

parameter increases, until β̂ = 0 is reached. We hence, ultimately expect sparsity when penalizing

using lasso. This is contrary to the squared squared l2 normed ridge penalty which has the following

closed form solution β̂ = yTx/
(
xTx+ λ

)
for both, β < and > 0 ; the β̂ here , however, does not

decrease specifically to zero as regularization grows ( Note: The coefficient does decrease, but not to

zero as was the case for l1 regularization). In addition, one can see that the sparsity of lasso coefficients

arises from the distinctive shape of the l1 penalty. This characteristic is a direct result of the contours

of the l1-normed penalty, where decreasing the degree of the lp norm is associated with an increased

expectation of sparsity.

By controlling the size of the coefficients, lasso regression does solve ill-posedness. However, it

becomes unstable under perfect collinearity for two identical vectors in the design matrix. One can

illustrate this result graphically in a two dimensional parameter space: Specifically, in the case of an

ill-posed problem arising from multicollinearity, leading to an underdetermined system, the objective

function is depicted as an ”infinite” ellipsoid.

43Subtlety: In this context, ”Irrelevance” does not imply ”uninformative” or ”statistically independent.” Instead, it
is defined within the framework of Lasso regression. Lasso regression may eliminate informative features if it perceives
them as irrelevant to the least squares minimization objective.
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Figure 4: Mutlicollinearity might induce loss function’s ellipsoid to degenerate wherein each point on
the ellipsoid is now represented by a line

Parallel lines represent the loss function; which due to collinearity result in a ”degenerate” ellipsoid

(One can imagine a horizontally squished and infinitely elongated ellipsoid where each point is a now

a line). Importantly this representation depicts instability under multicollinearity because the lasso

penalty represented by a square , cannot solve for loss functions that are parallel to its contours ( There

are infinitely many solutions). This is coherent, since, for equivalent features, any variable selection

method will arbitrarily select a matrix.

To resume, ridge regression shrinks the coefficients without performing feature selection while

lasso regression results in variable selection, but may fail to provide stable solutions under particular

cases of perfect multicollinearity. Hence, Elastic Net Regularization emerges as a middle ground

solution between ridge and lasso. This method is a lp normed regularization that combines both L1

and L2 penalties in an additive manner. Elastic Net regression is formally represented as: β̂EN =

argmin
β
{ 12
∑N

i=1

(
yi − β0 −

∑p
j=1 xijβj

)2
+ λ

∑p
j=1

(
ρβ2

j + (1− ρ) |βj |
)
, with ρ a tuning parameter ∈

[0, 1]. Intuitively, the dynamics of this method become apparent when conjecturing from the contour

of the elastic net penalty in a two-dimensional parameter space representation (see Figure 5). These

contours promote sparsity as they look like the l1 squared penalty, yet, the slight curvature along their

sides helps alleviate instability caused by multicollinearity, preventing the degenerate loss function

from being parallel to its contours.

Figure 5: In a two dimensional coefficients space, the restricted Elastic Net penalty takes this form
(Refer to Ivanov Regularization for an explanation of ”restricted” penalties ).

Thus from one side, by introducing absolute values, this penalization introduces sparsity and is a

feature selection method; and from the other, the squared penalty assures the stability of the solution,
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even under perfect multicollinearity with equal features. Like for lasso, and for the same reasons,

elastic net regularization has no closed form solutions. I use Accelerated Proximal Gradient Descent

to estimate the coefficients; I discuss the details of this method in the ”Numerical Methods” chapter.
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