
3 Underlying Machine Learning Theory

3.1 Statistical Learning theory

Ideally, for all machine learning methods we minimize the empirical risk - hoping that it is a good

surrogate for the real risk. Ultimately, one would like to get a strategy that generalizes best from

training to testing data ( By testing I mean, unseen independent data). That is, we do not want the

model to overfit i.e. fit too well that it fails on new unseen data.

Statistical learning theory provides insights to these ”over fitting”/”Generalization” phenomena in

Machine learning by theorizing these concepts and by proposing solutions. In fact, there are three

essential statistical learning metrics that determine Overfitting: On the first hand the ”Generalization

error” denoted ||r̂(ŝ) − r(ŝ)||p for some strategy ŝ and for some norm p, measures the difference

between the in-sample and the out of sample loss for some strategy evaluated in-sample. On the other

hand, statistical learning theory, defines two other metrics : The estimation and the optimization errors

through risk decomposition. In fact, any risk associated to some strategy can be decomposed by simple

algebraic manipulation. We can thus write the the ”Estimation / Approximation” decomposition :

r (ŝerm )− r0︸ ︷︷ ︸
Excess risk

= r (ŝerm )− r (s∗)︸ ︷︷ ︸
Estimation

error

+ r (s∗)− r0︸ ︷︷ ︸
Approximation

error

(2)

With ŝerm
17the estimated strategy that empirically minimizes the loss on training data such that

ŝerm = Arginfs∈S r̂(s); s∗ the strategy that minimizes the loss on unseen data for some hypothesis

space S such that s∗ = Arginfs∈Sall
r̂(s) and s0 the strategy that minimizes the loss on unseen data

on the whole hypothesis space such that:s0 = Arginfs∈Sall
r(s).

Note that the risk function r(.) we have used in 2 is the true risk 18 - it is the loss evaluated on

unseen data- and the decomposition formalizes the idea that learning is essentially about picking some

strategy s belonging to some set of strategies S which is , in turn , a subset of the whole space of

strategies: Explicitly, one can write : s ∈ S ⊂ Sall .19

Having presented these metrics; the generalization error 20 , the approximation error21 and the

estimation error 22 our goal is to ultimately minimize all three of them for the empirically minimized

17”Erm” is an abbreviation for Empirical Risk Minimization
18Not r̂(.) - The empirical one
19For example, if one chooses to modelize the data with a second order degree polynomial regression function and

hence end up with some ERM fit: s is represents the ERM fit, which is contained in S , the P2(x) polynomial, which in
turn is contained in Sall , the large hypothesis space of all PN (x) : n > 2 .

20The distance between model’s risk evaluated on some sample and the expected value of the risk
21i.e. How far is the best model in a chosen hypothesis class from the true best hypothesis
22i.e. How far is the best model to the estimated model in some chosen hypothesis space
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strategy to serve as an effective proxy to the true strategy. We thus want to study the dynamics of all

three of them. From the one hand, it is easy to deduce that, the approximation error, (r(s∗)− r0) is

inversely related to the complexity: That is because for s∗1 ∈ S1&s∗2 ∈ S2 with S1 ⊂ S2 (i.e. S1 belongs

to a more complex hypothesis class), r (s∗1) ≥ r (s∗2), i.e. the optimal risk can only reduce or stay

the same when exposed to new strategies.Hence, we minimize the approximation error by increasing

model’s complexity.

However, understanding the dynamics of both the generalization error and the estimation is not

trivial. Unlike the approximation error, it is not clear how a broader class of hypothesis would affect

both errors (We can individually study the dynamics of some risk associated to some strategy - this was

done for the approximation error whereby only one risk matters, the other , ro being fixed. However,

studying the dynamics of the difference between the 2 varying risks is not trivial).

Classical statistical learning theory ( Vapnik [29]) proposes to bound both errors measures in

order to study their dynamics. The rationale behind the derivation of these bounds is the following:

Probability theory offers many methods to derive bounds on deviations from expectations 23, which

we express as P (|x − E(x)| ≥ ε) ≤ αx(n, ε) with α depending on the probabilistic distribution of X.

We can generalize this to risk functions: P (|r̂(s) − r(s)| ≥ ε) ≤ αr̂(s)(n, ε). The issue here is that

the bound depends on a specific value of s. Accordingly, statistical learning theory derives bounds on

Maxs∈S |r̂(s) − r(s)| (called ”uniform bounds”) thus getting P (maxs∈S |r̂(s)− r(s)| ≥ ε) ≤ α(n, ε);

i.e. a bound that is not specific to one strategy. This deviation bounds both the generalization and

the estimation error. Knowing α (i.e. studying the bound of this derivation) gives us an indication

about the dynamics of both the estimation and the generalization error.

Estimation error ≤Max|r̂(s)− r(s)| ≤ Some bound

Generalization error ≤Max|r̂(s)− r(s)| ⩽ Some Bound

Statistical learning theory derives the bounds with respect to different complexity measures. Notable

examples are bounds with respect to |H|, the size of the hypothesis space ( But this is not convenient as

|S| −→ ∞ usually), the Vapnik–Chervonenkis dimension or even the Rademacher complexity (Mohri

et al. 2012 [18]). Each bound has its own specificity ( There are data dependent bounds, others are

distribution dependent etc ...) but the general idea is that both the generalized and the estimation

error are upper bounded by some measure of model’s complexity.

Thus, from one hand the approximate error is minimized by reducing model’s complexity, and from

the other hand, the complexity limits how bad the estimation and the generalization errors can go.

23Starting from Markov’s inequality, one can derive, under particular conditions, many different bounds such as
Chebychev , exponential Markov (Chernoff) bounds etc...
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Here, complexity is positively proportional to the bounds of the error. This result is very important

as it establishes a theoretical ”interpretation” of the estimation/approximation trade off 24,as well as

the variance bias trade off .

These derived bounds constitute the theory that supports the dynamics of the approximation /

estimation / bias / variance errors with respect to complexity: The models must be complex enough to

get a low approximation error ( or ”bias” in regression terms) but not too complex that the complexity

measure would increase the limiting upper bounds of the generalization and estimation error (or

Variance). Notice here that the bounds constitute theoretical support for the Occam razor principal;

i.e. the principal of parsimony that posits that the model should be as simple as possible.

The Variance-Bias trade off was not discussed in this paper, but its rationale and derivation method

is similar to that of the estimation approximation error, yet , those are two different concepts. They are

both derived by decomposition. The Variance bias decomposition is derived by breaking down the sam-

ple risk such that E[R(f̂))] = Exy

(
(y − Ey,x(y))

2
)

︸ ︷︷ ︸
Intrinsic Noise

+Ex

[
ED

(
f̂(x)

)
− Ey|x(y)

]2
︸ ︷︷ ︸

Variance

+Ex

[
ED

(
f̂(x) − ED

(
f̂(x)

))2]
︸ ︷︷ ︸

Bias

(German et al. 1992). However, the variance bias decomposition is not equivalent to the Estima-

tion/Approximation decomposition, further algebraic manipulations actually proves it ( Refer to the

variance bias decomposition section in appendix for a clear illustration of the difference between both

decompositions ).

This presented rationale derived from statistical learning theory provides the underlying theoretical

background of the machine learning methods that I present.

24I purposely did not say ”proof”, but ”interpretation”, because upper bounds alone do not guarantee the trade off

16


