

Forecasting Financial Returns using Machine Learning methods

Charbel Khazen

Abstract

This paper examines high dimensional factor modeling using Machine Learning methods. It

first delves into asset pricing theory for return forecasting and makes a case for utilizing ma-

chine learning methods in high-dimensional factor modeling. This paper thoroughly explains

the mathematics and reasoning behind Ridge Regularization , Lasso Regularization, Elastic Net

Regularization, Principal Component Regression, Independent Component Analysis, Generalized

Additive Models, Standard Regression Trees, Boosted Trees and Random Forests. These meth-

ods, employed for stock return forecasting on high-dimensional factor models, are examined in

relation to theoretical discussions and compared with traditional low-dimensional factor models.

Empirical results demonstrate that Machine Learning Methods yield performance on par with, if

not superior to, robust low-dimensional factor models. In ascending order, the most performing

models are: Random forests, Principal Component regression , Elastic net Regression, Regression

using Independent Component Analysis and finally Generalized additive models.

Keywords: Asset Pricing Theory, Statistical Learning Theory, Ridge Regularization, Lasso

Regularization , Elastic Net Regularization, Principal Component Analysis, Independent Com-

ponent Analysis, Information theory, Robust Estimation Methods, Generalized Additive Models,

Regression Trees, Cost Complexity Pruning, Boosted Trees, Random Forests, Resampling Meth-

ods, Accelerated Proximal Gradient Descent

2

The paper is structured as follows: Section 1 explores the theoretical foundations of factor

models, beginning with the assumption of a stochastic discount factor and demonstrating the

relevance of Machine Learning methods in this context. Section 2 discusses the methodology

used in this paper. The models rely on both theoretical and practical assumptions. I explain how

my models are built and what are their limitations. Section 3 delves into Statistical Learning

theory to explain the rationale underlying Regularization and Dimension reduction techniques.

Section 4 explains l1, l2 and Elastic Net Regularizations. I argue that these methods are es-

sential to solve both issues of overfitting and ill posedness. This section draws on concepts from

statistical learning theory and linear algebra, providing a comprehensive understanding of each

method’s mathematical properties. Section 5 explains both Principal Component Analysis and

Independent Component Analysis. I derive PCs and ICs mathematically, discuss the properties

of both methods and compare them. Section 6 introduces the Huber Loss function as a robust

alternative to the standard quadratic loss. Section 7 discusses the Accelerated Proximal Gradi-

ent Descent Method and explains its underlying mathematical foundations. Section 8 focuses on

Generalized Additive Models, detailing their logic, properties, and comparing them with different

non-linear models. Section 9 explains regression trees, their theoretical foundations, discusses

cost complexity pruning, and argues for the need of ensemble methods. I discuss both Boosted

trees and Random Forests.In Section 10 predictive metrics such as out-of-sample R-squared as

well as the out of sample Mean squared error are explained. Section 11 covers resampling meth-

ods, reviewing standard techniques and proposing a method best suited for the data. Section 12

delves into empirical results, presenting data, comparing method performances, and benchmarking

against three low-dimensional factor models. The commented code can be found in the Technical

Appendix.

3

Contents

1 Introduction - Underlying theory and rationale 6

1.1 Theoretical Framework . 6

1.2 Necessity for Machine Learning Methods . 9

2 Methodology 11

3 Underlying Machine Learning Theory 14

3.1 Statistical Learning theory . 14

4 L1, L2 and Elastic Net Regularizations 17

4.1 Regularization and Overfitting . 17

4.2 Regularization and Ill-posedness . 18

5 Dimension Reduction Methods 26

5.1 Principal Component Analysis . 26

5.2 Independent Component Analysis . 29

6 Robust Linear Estimation 34

7 Numerical Methods 36

8 Generalized Additive models 40

9 Regression Trees 44

9.1 Regression Trees . 44

9.2 Ensemble methods . 48

9.2.1 Random Forest . 48

9.2.2 Boosted Trees . 49

10 Predictive Evaluation Metrics 52

11 Resampling Methods 54

12 Empirical Analysis 56

13 Conclusion 62

14 Technical Appendix 64

14.1 Multicollinearity Evaluation . 64

4

14.1.1 The Variance Inflation Factor . 64

14.1.2 The Conditional Number . 64

14.2 Backfitting Algorithm for GAMs . 64

14.3 The Variance-Bias Decomposition . 65

14.4 Least-Norm solution . 66

14.5 Proximal Operators . 66

14.6 Independent Component Analysis Visualized . 67

14.7 List of Factors . 68

14.8 Code . 70

5

1 Introduction - Underlying theory and rationale

1.1 Theoretical Framework

Theoretical asset pricing relies on factor modeling to forecast returns. In this paper, I will first present

the underlying logic behind these models, then I will argue for the need of machine learning methods

to get more efficient results. First, much of Asset Pricing theory is based on the assumption of the

law of one price, that is, the premise that all portfolios of securities with the same payoff should have

the same price 1. This is a weak assumption from an economical point of view - as it is a much less

restrictive than classical utility functions assumptions for instance - yet, it entails the presence of a

payoff pricing functional, i.e. a function that takes as input the payoffs 2 and returns a price in R 3

. LeRoy et al.[13]define the pricing functional p : Rs → R such that p(X) = p; for s the number of

different states of nature; X a subspace of Rs spanned by the payoffs x and p the price of a portfolio.

Notice how X doesn’t span the whole space Rs as markets are assumed incomplete i.e. investors cannot

buy (or synthesize) any contingent claims, and hence the payoff space is constrained; Rendering the

model more realistic 4. In addition, p(X) is assumed to be linear: i.e for two payoffs x and x′ we have

p(αx+ γx′) = αp+ γp′ for any α,γ ∈R .

These loose assumptions are the building blocks of asset pricing factor modeling, as they guarantee

the existence of a stochastic discount vector (SDF). In fact, by the Riesz Representation theorem:

for a linear functional L(.) on some Hilbert space H, ∃v ∈ H such that ∀u ∈ H, L(u) = ⟨u, v⟩.

Riesz theorem applies in our framework: given that p(X) is a linear functional and E[XY] (for some

some random X, Y in the vector space) is an inner product5, then, for p(X) s.t p : Rs → R then

∃ a unique m ∈ X which is defined as the stochastic discount factor , such that p(X) = ⟨x,m⟩ = E[mx].

Simply stated we can represent the linear pricing functional by an inner product with a unique vector,

the SDF. This fact is more evident when illustrated geometrically:

1With a sufficient and necessary condition that every portfolio with no payoff has a price of zero
2At all different states of nature
3A functional is a mapping from some vector space to real numbers.
4To understand this ; here is a concrete example: Assuming two states of natures; we can imagine a simple market

in which there is a single security that either pays 1.1 or .9. The payoff space is ”constrained” in the sense that we
cannot synthesise the security to get any payoff we want : we either get 1.1 or .9 or some scaled version of them; the
codomain X is thus a 1 dimensional plane defined by a scaled version of the payoff in this state space in R2. This logic
is generalizable to realistic markets by assuming high dimensional state space representations.

5E[XY] is an inner product as it respects the three defining axioms of inner products: symmetry, bi-linearity and
positive definiteness)

6

Figure 1: Geometric proof of the existence of a unique SDF m s.t. E[mX] ≡ p(X). To prove it we
visualize the SDF in the payoff space RX - Not to be confused with the space of states of nature Rs

Geometrically (see Figure 1 [3]), This equivalence between E[mX] and p(X) can be represented

in a state space representation in X , the span of payoffs in an incomplete market 6. I will consider

for simplicity a two-dimensional payoff plane X, but the same logic is generalizable to any dimension

of X. Since each price is represented by a linear function of their corresponding payoffs (Due to the

linearity of p(.)), we can draw parallel prices hyperplanes 7 linearly in RX .We pick some vector m

orthogonal to the price hyperplanes; then for any payoff belonging to some price plane = a , s.t. a

represents some fixed price, the inner product between any payoff on p = a and m is the same 8

.Formally: < m,xon price hyperplane a > = cstfor each hyperplane plane a implies the existence of a vector m

orthogonal to all the price hyperplanes in RX such that E[mX] and p(X) are equivalent.

In addition to the existence of a unique SDF, assuming the absence of arbitrage (along the law

of one price) we get that the stochastic discount factor is always positive. In fact, p(x) = E(mx) =∫
m(s)x(s)π(s)ds for s the number of States of Nature and π(s) the probability of some state of nature.

Assuming that prices and payoffs are always positive, and since probabilities are always positive; then

m(s) is always positive ∀s .

Importantly, one can derive from p(x) = E(mx) - Also called the ”Euler” (or ”basic”) model - a

single Factor model by Simple algebraic manipulations9 such that

E(Ri)−Rf = βi,mλm (1)

That is, the expected premium return for each security is determined by a price risk λm ,common to

all securities, and the regression coefficient from regressing this security’s return on some stochastic

6which is a subset of Rs

7Or ”planes” - like in Figure - depending on the dimensions of the payoff space.
8This is implied by construction and is seen clearly in the figure above, since the inner product between x and m is

|proj (x | m)| × |m|
9The payoff R corresponds to a unit price; One can thus write the Euler equation and decompose it as such 1 =

E(mR) = cov(m,R)+E(m)E(R). We divide both sides by E[m] and get E(R) = 1
E(m)

− cov(m,R)
var(m)

· var(m)
E(m)

with Rf = 1
E(m)

and with
Cov(m,R)
Var(m)

the linear regression coefficient from regressing R on m with both R and m demeaned variables.

7

discount factor m.

This approach to asset pricing this Powerful: By assuming the law of One price and the absence of

arbitrage, which are mild assumptions from an economical perspective, we were able to derive the Euler

equation and represent expected Returns with respect to some unique stochastic discount Factor as a

single Factor model. This is also generalizable to multiple Factor models by assuming factors which are

linearly related to the SDF. Hence, for any vector of factors f s.t. m = a+b′f ⇐⇒ E
(
Ri
)
= Rf +λ′βi

With βi Coefficient vectors of the regression of Rion f . This is the underlying Theory upon which

Factor models are built and Asset Pricing Theory (APT) is essentially concerned with constructing an

adequate SDF and relating it to the data. In other words, APT begins with the following assumption

p(x) = E(mx) , and ultimately aims to comprehend how m = f(data).

”Traditionally”, economically motivated stochastic discount factors (and hence Factor models)

obey to two different logics: The Arbitrage Pricing Theory And the General Equilibrium logic. They

both differ in their economic assumptions and their inspiration for factors. From one side, general

equilibrium models are absolute pricing models derived by expressing the stochastic discount factor

with respect to marginal utility - for some assumed u(.) - and restricting the model by imposing

economic assumptions 10such that the SDF is a linear function of some factor(s). These models are

generally sub models of the broad Intertemporal Capital Asset Pricing model. On the other hand, APT

models are relative asset pricing models derived by picking factors that have a small R2 when regressed

on return. The APT relies on the assumption of an upper bound on the Sharpe ratio, suggesting that a

small R2 of the regression of expected return on the picked factors implies that the intercept is small and

hence that the factors are well specified, implying a factor model. 11 However, ultimately, both logics

express the same representation of Returns as linear function of factors. These economically motivated

models do not perform well out of sample for evident reasons12 .This phenomenon is extensively

documented. For instance, Fama French disproved ICAPM models by introducing new variables to

the model and testing their coefficients; Mehra and Prescott (1985) [17] demonstrated that the widely

used consumption-based models (i.e. what I define as ”General equilibrium logic” models) do not align

with empirical data. Additionally, APT models also exhibit out-of-sample failure. Rapach and Zhou

(2013)[21], in their survey on return predictability, clearly highlight the shortcomings of well-known

factor models in out-of-sample tests. Furthermore, Bossaerts and Hillion (1999) [1]and Goyal and

Welch (2003, 2008)[31] [6]argued that, despite the high in-sample forecastability of some well-known

factor models, many popular models fail to outperform naive benchmarks on out-of-sample data. Roll

10Those are assumptions on wealth, on time periods, on salary etc...
11The ICAPM is considered to be an ”absolute” model because it provides a framework that explains the price of any

security, while the APT is ”relative” because it lacks a fundamental rationale for all assets as it explains returns relative
to other returns (without explaining them).

12Economic theory is restrictive. And if not tested out of sample, we will always be able to find some model that
mimicks the data; but this is not forecasting anymore

8

(1977)[22] formalized another issue with economically motivated factors in his critique of the validity

of empirical tests, arguing that factors are equivalent to mean-variance frontier returns, and that it is

always possible to construct overfitting models by picking in-sample mean-variance efficient returns.

In other words, many commonly used factor models do not generalize well to new, unseen data; as

they tend to overfit on the training data.

1.2 Necessity for Machine Learning Methods

Because economic Theory imposes restrictive and non-realistic assumptions, there has been a growing

literature that rather focuses on a pure linear algebra interpretation of stochastic discount factors

(and Factor models in general) . The initial problem remains the same from this perspective, the

Euler equation remains the foundational structure of the model, but, the stochastic discount factors’

construction is tackled differently. Accordingly, many ”modern” academic asset pricing papers study

the problem as a linear algebra problem and interpret the Stochastic discount factor as factor loadings

accordingly: Principal component analysis for example - among other dimension reduction techniques

- has been extensively documented in asset pricing literature: Stock and Watson (2002) [24] use prin-

cipal component to summarize the number of macro economic predictors in macroeconomic forecasts,

Ludvigson and Ng (2007)[15]use both Factor Analysis in correspondence with Principal Component

Analysis to summarize the feature space, and gets statistically significant out-of-sample results and

Nagel (2021)[19], for example, argues for the need of dimension reduction methods for better out of sam-

ple performance... References to dimension reduction techniques in empirical asset pricing academia

are ubiquitous, reflecting the abundance of dimension reduction methods (and candidate regularization

methods associated to each of them). Hence, Machine learning emerges in factor modeling though the

prism of linear algebra.

In addition, because of the growing availability of huge financial data, machine learning emerges also

as a practical alternative to standard classical models which fail statistically under high dimensional

factor modelling . By introducing lp regularization, dimension reduction and non linearity to the

standard factor modeling framework, the model is now able to adapt to high dimensional data and hence

incorporate complex dynamics. Accordingly, many academicians tackled the problem as such: Lewellen

(2015)[14], for instance, uses 15 features, Freyberger et al. (2020)[5] use 36, Gu et al. (2020b) [9] use

approximately a thousand factor and Nagel (2021)[19] argues that the adoption of high-dimensional

factor modeling is inevitable and highlights the growing prevalence of factors in literature as evidence

supporting this trend.

In addition, machine learning methods, focus on practical out of sample measures to evaluate a

model, this is in contrast with standard asset pricing testing, which rely on in-sample goodness of fit

9

tests. Typically, for a generic factor model, E[Rei] = βimλm , one first runs a time series regression to

find the beta, regresses the expected excess return on the beta, and tests the significance of the model

using GLS, Wald...or some other in sample test. This typical Procedure, is not robust, as it neglects

the out of sample performance; while the essence and strength of machine learning lie in its ability

to provide reliable out-of-sample performance metrics through the utilization of diverse resampling

methods.

10

2 Methodology

Thus, for all these reasons, Machine learning methods emerge naturally when building predictive

models. In this paper, I build my predictive models upon the Euler equation using different machine

learning methods. The exact framework I use is the following: Et (ri,t+1|Xt) = g (βi,tλt) with g(.) some

flexible function (Note:I will refine this model at the end of this paragraph). This model incorporates

Euler equation, but permits its generalization to non linear models. I build upon Euler equation as it

is the least restrictive and thus the most adaptable to machine learning methods, and because - as I

argued - economically interpreted asset pricing models fail in out-of-sample forecasting. This equation

, is however , slightly different than the one presented formerly. In fact, the formula derived at 1 is an

unconditional model for which the returns and the βs of asset i are independently sampled at each time

from their respective distribution for each firm; I instead condition the equation using a large condition

set without loss of generality13 ; the conditioned Euler equation upon which I will work is rather :

E [Ri,t+1 | Xt] = βi,tλt with Xt the set of all conditioning information at time t, which I choose to be

extensive. The particularity of this model is twofold : It is very flexible and conditions on a large set

of information; rendering it ideal for machine learning applications. The information set I use contains

both firm characteristics features and fundamental macroeconomic indicators; the covariance matrix is

thus a combination of both types of factors ; hence, factors are written as: Xi,t = (mt)⊗ ci,t ; defined

as the Kronecker product between the mt , the macro variable and ci,t the characteristics for each firm

i at time t . Conditioning on an information set is essential for building predictive models , as the

returns at different times are not independent and identically distributed (as in unconditioned models)

. I consider g(.) to be a general function of the p-dimensional set of factors Xi, t, relating the Euler

equation to different non linear non parametric models; notably Generalized additive models, and trees.

This function is neither time dependent nor security dependent; it describes a general relationship that

is always the same across the cross section and the time series, and provide stable estimations across

the panel. Panel modeling used here, differs from the standard time series or cross sectional14 models

used in classical asset pricing, as it attempts to explain both the time variation and cross section of

returns. It is relevant in the context of using machine learning methods, because exploiting different

stock levels observations for different time stamps provides a vast number of observations to work with

and introduces complex patterns, that can eventually be learned using machine learning methods. In

addition, it is common practice to focus on returns rather than prices; because, assuming efficient

13Note: Passing from an unconditioned to a conditioned model is without loss of generality as the conditioned model
is true ∀ time period; however, the converse is not true.

14Subtlety: many models labeled as cross-sectional in the literature are, in fact, panel data models. This conflation of
panel modeling with cross-sectional analysis stems from historical reasons. Initially, ”cross-sectional” analysis referred
to unconditional modeling of single returns. Over time, this transitioned into a panel prediction problem, encompassing
various returns. However, the term ”cross-section” persisted. (Kelly, 2023) [11]

11

markets, prices can be seen as an AR(1) process, and return as white noise 15 . In practice, the

AR(1) assumption often falls short, and the stationarity of returns is not guaranteed. Considerable

attention has been devoted to this issue, with extensive literature exploring the optimal process models

for prices from one side and the challenges of testing for stationarity from the other. However these

topics are beyond the scope of this paper.I nonetheless utilize returns instead of prices in my models

as a heuristic.

In addition, in reality, it is important to recognize that the underlying distribution of asset prices is

very complex as prices are set by a colossal number of - both dependent and independent - real agents,

each having they own preferences, reacting - both dependently and independently - to different sets

of information. 16 Hence, even though the model employed in this paper is economically flexible and

broad from an economical point of view - as it does not rely on equilibrium assumptions,or agent-related

assumptions - This is not the case from a practical point of view. In fact, building a predictive model

using a single g(.) function that incorporates all the complexity of price dynamics, can be considered

far fetched from a practical point of view. Hence, I do not expect my model to serve as a practical

forecasting tool for practitioners; the primary aim of investigating this topic is to assess its empirical

results and compare them to benchmark models commonly employed in the literature. Accordingly, I

use ”robust” factors documented by Lewellen (2015) [14] , to form my benchmark factor models. Those

factors are robust in the sense that their statistical performance has been rigorously assessed through

Fama-MacBeth Regressions across various time windows and against diverse models. Specifically, these

factors consist of two distinct sets of firm characteristics, grouped differently, both exhibiting robust

predictive power. Those factors encompass size, book to market ratio, working capital accruals, return

on equity, asset growth, dividend to price ratio , growth in common shareholder equity, 36 and 12

month momentum, beta , return volatility, share turnover, sales to price and leverage. I review the

benchmark models in detail in theEmpirical Analysis chapter.

In the upcoming sections of this paper, I introduce the foundational theory behind machine learning

methods, specifically focusing on statistical learning theory. This will establish the theoretical basis for

the statistical methods utilized in this paper. Following this, robust linear estimation is explained, and

the discussion extends to L1and L2 regularization, clarifying their rationale in solving ill-posed prob-

lems and controlling over fitting, and discussing their relevance to my work. Subsequently, dimension

reduction methods, such as Principal Component Analysis and Independent Component Analysis, are

15Considering prices as AR(1) processes , we can writePt+1 = Pt + ϵt , with ϵt i.i.d. . Pt+1−Pt is mean-independent,
however, the magnitude of the percentage changes may increase with the level of the stock price, dividing, by Pt , gives

us a stationary process. This is the formula for Returns Rt =
Pt+1−Pt

Pt
16Taleb (2022)[26], in his work on the statistical consequences of fat tails, even posits that returns are not predictable

as they exhibit fractal properties. This argument is even stronger than the Efficient Market Hypothesis which does not
preclude the existence of return predictability (Rapach,Zhou[21]) . What Taleb actually suggest, is that, by exhibiting
power law behavior, returns’ essential statistical properties are not clear anymore

12

explored, emphasizing their significance and application in high-dimensional return prediction mod-

els. A detailed examination of Generalized Additive Models follows, succeeded by an exploration of

Regression Trees, Gradient Boosted Trees and Random Forest and their application to this research.

Then, I rigorously explain the optimization method employed in this paper , notably the accelerated

Proximal Gradient Descent Method, as well as the resampling method used ; and finally conclude with

an empirical analysis of the results.

13

3 Underlying Machine Learning Theory

3.1 Statistical Learning theory

Ideally, for all machine learning methods we minimize the empirical risk - hoping that it is a good

surrogate for the real risk. Ultimately, one would like to get a strategy that generalizes best from

training to testing data (By testing I mean, unseen independent data). That is, we do not want the

model to overfit i.e. fit too well that it fails on new unseen data.

Statistical learning theory provides insights to these ”over fitting”/”Generalization” phenomena in

Machine learning by theorizing these concepts and by proposing solutions. In fact, there are three

essential statistical learning metrics that determine Overfitting: On the first hand the ”Generalization

error” denoted ||r̂(ŝ) − r(ŝ)||p for some strategy ŝ and for some norm p, measures the difference

between the in-sample and the out of sample loss for some strategy evaluated in-sample. On the other

hand, statistical learning theory, defines two other metrics : The estimation and the optimization errors

through risk decomposition. In fact, any risk associated to some strategy can be decomposed by simple

algebraic manipulation. We can thus write the the ”Estimation / Approximation” decomposition :

r (ŝerm)− r0︸ ︷︷ ︸
Excess risk

= r (ŝerm)− r (s∗)︸ ︷︷ ︸
Estimation

error

+ r (s∗)− r0︸ ︷︷ ︸
Approximation

error

(2)

With ŝerm
17the estimated strategy that empirically minimizes the loss on training data such that

ŝerm = Arginfs∈S r̂(s); s∗ the strategy that minimizes the loss on unseen data for some hypothesis

space S such that s∗ = Arginfs∈Sall
r̂(s) and s0 the strategy that minimizes the loss on unseen data

on the whole hypothesis space such that:s0 = Arginfs∈Sall
r(s).

Note that the risk function r(.) we have used in 2 is the true risk 18 - it is the loss evaluated on

unseen data- and the decomposition formalizes the idea that learning is essentially about picking some

strategy s belonging to some set of strategies S which is , in turn , a subset of the whole space of

strategies: Explicitly, one can write : s ∈ S ⊂ Sall .19

Having presented these metrics; the generalization error 20 , the approximation error21 and the

estimation error 22 our goal is to ultimately minimize all three of them for the empirically minimized

17”Erm” is an abbreviation for Empirical Risk Minimization
18Not r̂(.) - The empirical one
19For example, if one chooses to modelize the data with a second order degree polynomial regression function and

hence end up with some ERM fit: s is represents the ERM fit, which is contained in S , the P2(x) polynomial, which in
turn is contained in Sall , the large hypothesis space of all PN (x) : n > 2 .

20The distance between model’s risk evaluated on some sample and the expected value of the risk
21i.e. How far is the best model in a chosen hypothesis class from the true best hypothesis
22i.e. How far is the best model to the estimated model in some chosen hypothesis space

14

strategy to serve as an effective proxy to the true strategy. We thus want to study the dynamics of all

three of them. From the one hand, it is easy to deduce that, the approximation error, (r(s∗)− r0) is

inversely related to the complexity: That is because for s∗1 ∈ S1&s∗2 ∈ S2 with S1 ⊂ S2 (i.e. S1 belongs

to a more complex hypothesis class), r (s∗1) ≥ r (s∗2), i.e. the optimal risk can only reduce or stay

the same when exposed to new strategies.Hence, we minimize the approximation error by increasing

model’s complexity.

However, understanding the dynamics of both the generalization error and the estimation is not

trivial. Unlike the approximation error, it is not clear how a broader class of hypothesis would affect

both errors (We can individually study the dynamics of some risk associated to some strategy - this was

done for the approximation error whereby only one risk matters, the other , ro being fixed. However,

studying the dynamics of the difference between the 2 varying risks is not trivial).

Classical statistical learning theory (Vapnik [29]) proposes to bound both errors measures in

order to study their dynamics. The rationale behind the derivation of these bounds is the following:

Probability theory offers many methods to derive bounds on deviations from expectations 23, which

we express as P (|x − E(x)| ≥ ε) ≤ αx(n, ε) with α depending on the probabilistic distribution of X.

We can generalize this to risk functions: P (|r̂(s) − r(s)| ≥ ε) ≤ αr̂(s)(n, ε). The issue here is that

the bound depends on a specific value of s. Accordingly, statistical learning theory derives bounds on

Maxs∈S |r̂(s) − r(s)| (called ”uniform bounds”) thus getting P (maxs∈S |r̂(s)− r(s)| ≥ ε) ≤ α(n, ε);

i.e. a bound that is not specific to one strategy. This deviation bounds both the generalization and

the estimation error. Knowing α (i.e. studying the bound of this derivation) gives us an indication

about the dynamics of both the estimation and the generalization error.

Estimation error ≤Max|r̂(s)− r(s)| ≤ Some bound

Generalization error ≤Max|r̂(s)− r(s)| ⩽ Some Bound

Statistical learning theory derives the bounds with respect to different complexity measures. Notable

examples are bounds with respect to |H|, the size of the hypothesis space (But this is not convenient as

|S| −→ ∞ usually), the Vapnik–Chervonenkis dimension or even the Rademacher complexity (Mohri

et al. 2012 [18]). Each bound has its own specificity (There are data dependent bounds, others are

distribution dependent etc ...) but the general idea is that both the generalized and the estimation

error are upper bounded by some measure of model’s complexity.

Thus, from one hand the approximate error is minimized by reducing model’s complexity, and from

the other hand, the complexity limits how bad the estimation and the generalization errors can go.

23Starting from Markov’s inequality, one can derive, under particular conditions, many different bounds such as
Chebychev , exponential Markov (Chernoff) bounds etc...

15

Here, complexity is positively proportional to the bounds of the error. This result is very important

as it establishes a theoretical ”interpretation” of the estimation/approximation trade off 24,as well as

the variance bias trade off .

These derived bounds constitute the theory that supports the dynamics of the approximation /

estimation / bias / variance errors with respect to complexity: The models must be complex enough to

get a low approximation error (or ”bias” in regression terms) but not too complex that the complexity

measure would increase the limiting upper bounds of the generalization and estimation error (or

Variance). Notice here that the bounds constitute theoretical support for the Occam razor principal;

i.e. the principal of parsimony that posits that the model should be as simple as possible.

The Variance-Bias trade off was not discussed in this paper, but its rationale and derivation method

is similar to that of the estimation approximation error, yet , those are two different concepts. They are

both derived by decomposition. The Variance bias decomposition is derived by breaking down the sam-

ple risk such that E[R(f̂))] = Exy

(
(y − Ey,x(y))

2
)

︸ ︷︷ ︸
Intrinsic Noise

+Ex

[
ED

(
f̂(x)

)
− Ey|x(y)

]2
︸ ︷︷ ︸

Variance

+Ex

[
ED

(
f̂(x) − ED

(
f̂(x)

))2]
︸ ︷︷ ︸

Bias

(German et al. 1992). However, the variance bias decomposition is not equivalent to the Estima-

tion/Approximation decomposition, further algebraic manipulations actually proves it (Refer to the

variance bias decomposition section in appendix for a clear illustration of the difference between both

decompositions).

This presented rationale derived from statistical learning theory provides the underlying theoretical

background of the machine learning methods that I present.

24I purposely did not say ”proof”, but ”interpretation”, because upper bounds alone do not guarantee the trade off

16

4 L1, L2 and Elastic Net Regularizations

Given the underlying asset pricing theory explained above, linear models hold considerable relevance in

the context of empirical asset pricing. I use them not only for theoretical reasons but also for practical

applications. In fact, linear models are Taylor expansions of non linear parametric models. This is

useful in a setting as complex as return forecasting: By acting as the most lenient approximation in

a highly intricate setting, linear models emerge as optimal amidst unknown models. In the context

of high dimensional factor modeling however, standard linear models are not adequate. Therefore, in

this section, I introduce regularization methods tailored for linear models, allowing their application

in high-dimensional settings. Regularization serves two main purposes: Preventing over fitting, and

solving ill-posed problems. Both issues are fundamental in Returns forecasting given that we are

searching for the model that generalizes best to unseen data using limited data 25 . I will tackle both

approaches to regularization and propose three regularization methods Ridge, Lasso and Elastic Net

to remedy the problem.

4.1 Regularization and Overfitting

As explained, finding the best predictive model is equivalent to finding the hypothesis space (or

strategy) that generalizes best out of sample. Regularization introduces the idea of constraining

the hypothesis space. Essentially, it defines a complexity measure Ω : F −→ [0,∞) and restricts

the hypothesis space to some level of complexity defined by Ω(F). Formally, For some hypothesis

space F And a complexity measure Ω(F), we reduce the hypothesis place to a subset of hypothesis

F = {f ∈ F | Ω(F) ⩽ r} For some level r of complexity. Complexity measures are defined as Lp

Norms, such that
l0 complexity: Ω(f) = # of Non zero coefficients

l1 ’Lasso’ complexity: Ω(f) =
∑p

i=1 |wi|

Squared l2 ’Ridge’ complexity: Ω(f) =
∑p

i=1 wi
2

Complexity, given a linear regression, is defined as the degrees of freedom of parameters. The more

free to vary are the parameters, the more complex is the model and vice versa. Hence, constraining

the hypothesis space by some complexity measure reduces the models complexity. Having defined

the framework, regularization is defined as an Empirical Risk Minimization problem restricted by a

subset of model’s hypothesis space. Ivanov regularization (IR) Formalizes clearly this idea: For some

complexity measure defined as an Lp norm and a tuning parameter r > 0 defining the complexity

level. We define Ivanov regularization as : minf∈F

[
1
N

∑N
i=1 l (yi, f (xi))

]
such that Ω(F) ≤ r. By

considering r as a hyper parameter, IR incorporates the models complexity to the minimization prob-

25Limited data will restrict our problem to an ill-posed one

17

lem: Not only empirical risk is minimized, but complexity is also adjusted so that model generalizes

best on some validation set. A more common regularization is the Tikonov regularization (TR) : For

some complexity Ω(F) defined by an Lp norm and a tuning parameter λ ≥ 0, TR is defined as :

Minf∈F
1
N

∑N
i=1 l (yi, f (xi)) + λΩ(f). Tikhonov regularization is equivalent to Ivanov regularization

for certain loss functions and for certain complexity measures. Importantly, equivalence holds for both

Ridge and Lasso regressions(Oneto et al. [20]).IR gives a clear idea of what’s happening under the

hood, while, TR is an easier to solve, unconstrained, minimization problem.

In summary, Ridge and Lasso regressions represented by Tikhonov regularization, express the idea

clearly formalized by Ivanov regularization: That is, finding the best empirical risk minimized model

by cutting down the hypothesis space from F to Fr ; i.e. by reducing the complexity level. We now

have a clear picture of how regularization controls overfitting:

Recall the approximation error r (s∗)− r0 which is inversely proportional to changes in complexity;

the estimation error r(ŝ) − r (s∗) which, along the generalization error ∥r̂(ŝ) − r(ŝ)∥p have positively

proportional bounds with respect to complexity; by cutting down the hypothesis space and hence by

controlling model’s complexity, regularization ”controls” overfitting by trading off generalization and

estimation error for approximation error (Overfitting can thus never be completely eliminated) 26

In forecasting returns and in predictive models in general, overfitting constitutes a fundamental

issue; hence, regularization appears as a natural alternative to Simple ordinary least squares Factor

modeling used traditionally.

4.2 Regularization and Ill-posedness

In addition to over fitting, ill-posedness is a customary issue in Factor modeling, i.e we almost al-

ways need to solve a problem where either the solution does not exist or the number of solutions is

infinite. In fact, factor modelling is fundamentally an Ax = b problem whereby A is generally not

well determined. 27 Ill-posed systems are either due to over determined systems, those are typically

the case in classical Factor modeling with P factors and N Returns such that P¡¡N; or due to under-

determined systems: Those are typical in high dimensional machine learning applications whereby

the number of features surpasses the number of observations; P¿¿N. In addition, Ill-posedness may

also be the result of (Multi)-Collinearity or Near-(Multi)collinearity in the design matrix when two

or more columns (or rows) vectors are linearly dependent (or nearly linearly dependent). Note: an

26Along this conclusion we also deduce from statistical learning theory that as the number of observations N increase
we want less and less regularization. In fact, regularization increases approximation error and decreases estimation error;
the speed at which approximation errors changes is independent of N⇒ O(1) while the estimation and generalization

error bound depends on N (Assuming Rademacher complexity), we find that the bound ≤ O

(√
lgn
n

)
Thus, one should

regularize less as N increases.
27Note, in the context of factor modeling A represents the design Matrix - or ’the factor Matrix- , b the returns vector

and X the coefficients.

18

underdetermined system implies multicollinearity in the design matrix 28 ; however, Multicollinearity

does not strictly reduce to an underdetermined system it also may result in an overdetermined one 29.

Importantly: Multicollinearity implies ill-posedness of the system (See appendix for more information

about multicollinearity evaluation measures).

Classical asset pricing is mainly concerned with the issue of over determined systems, this paper

however deals with both over and under determined scenarios as high dimensional Factor models are

explored.

Typically, from a classical linear algebra point of view, ill-posed problems are solved by finding

the x that minimizes||Ax − b||2. Laub (2005) [12] provides the general solution to this least squares

problem as such: For A ∈ RN×P&b ∈ RN×K , the solution to the least squares problem is:

XLS = A+b+
(
I −A+A

)
Y (3)

for some arbitrary vector Y ∈ RP×K and with A+ the Moore-Penrose Pseudo Inverse of A. Hence,

we can always find a solution xLS For any Ax = b problem as a function of the pseudo inverse.

The pseudo inverse is a generalization of the two-sided inverse 30that applies on any Matrix whether

singular or rectangular or Multicollinear etc... It is not exactly an inverse but its properties resemble

that of an inverse 31 and is defined as A+ = V

 S−1 0

0 0

U⊤ - which is obtained by exploiting

the Singular Value decomposition of A 32 . By employing the pseudo inverse one can always find a

unique (sometimes approximate) solution for ill-posed problems: In fact, using 3 we will either get

a unique solution. Or infinitely many solutions and accordingly choose the minimum norm solution.

For instance for some under determined system Ax = b we get XLS = A+b + (I −A+A)Y infinitely

many solutions, we can chose however a unique approximate solution: the minimum-norm solution

by choosing XLS = A+b such that Y = 0 33 In this sense, by utilizing the Pseudo inverse, one can

always get, an approximate unique solution no matter how ill-posed the system is: This is the standard

28If A (N × P) has P >> N , this implies multicollinearity by the rank nullity theorem. See Multicollinearity section
in appendix for proof

29

(
1 2
2 4

)
x =

(
1
2

)
is an example of multicollinearity that reduces to an underdetermined system and(

1 2
2 4

)
x =

(
3
4

)
is an example of multicollinearity that reduces to an overdetermined system

30The two-sided inverse, is actually what we refer as the ”inverse” in general. We define the 2-sided inverse of some
matrix A as G = A−1 : GA = AG = I

31For some matrix A, those are, for instance, some of the main ”inverse-like” properties of the Pseudo Inverse G=A+:
AGA = A
GAG = G
(AG)T = AG
(GA)T = GA

......

32There are also closed forms for A+.For example,for A having full row rank A+ = A⊤ (
AA⊤)−1

and for A having

full column rank A† =
(
AA⊤)−1

A⊤)
33See Least Squares Solutionappendix for graphical representation

19

approach to ill-posedness in linear algebra.

Figure 2: This Chart shows how using A+ can always result in a unique (approximate) solution. This
representation builds upon Strang’s four fundamental subspaces of linear algebra to represent different
reactions to ill-posedness.

Regularization as an alternative :

This ”standard” method for solving ill-posed systems is ubiquitous 34 ; it however suffers from

two major drawbacks. From the one hand, using the A+ to compute the solution, does not directly

address the issue that is causing ill-posedness (Multicollinearity for instance); but rather, solves the

problem in a generic manner. Second, and most importantly, computing the Pseudo inverse can be

computationally expensive for large matrices, as it requires computing the eigenvectors/eigenvalues of

the matrix and the reciprocals of its singular values. For a large and sparse design matrix A, as it is

in this paper, this may be practically very challenging. Hence, for interpretabilty and computational

reasons, one ought to find alternatives to Pseudo-inverse; Regularization emerges here as a natural

solution.

Instead of exploiting the singular value decomposition of A, Tikhonov regularization solves ill-posed

problems numerically by controlling the norm of ||x|| while minimizing ||Ax − b||2 ;and is formally

defined as ArgMinx ||Ax− b||2 + λ∥|x||p. This method has also its limitations (which I discuss in the

end of this section) but it is much less computationally expensive and more natural than the pseudo

inverse solution. I will present three different expressions of the Tikhonov regularization and explain

how I will use them in my paper:

First, the Ridge Regression (RR) is expressed as a Tikhonov regulatization with a squared l2 normed

penalty. Explicitly, Ridge is defined as: ArgMinx ||Ax− b||2 + λ∥|x||2 , with λ a tuning parameter > 0

34Notably, many programming libraries, do incorporate this logic into their estimation algorithm for linear models.
Hence, when fitting a linear model - with some ill-posedness resulting in under determined systems (for instance with
a mutlicollinear matrix A , or using a design matrix with more features than observations...) we can still get a result.
This solution is actually the approximate solution found by using the Moore Penrose pseudoinverse and picking the least
norm solution.

20

,which translates in our linear regression framework into :

β̂ridge = argmin
β


N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

+ λ

p∑
j=1

β2
j


We have already seen in the previous section that - since Ivanov and Tikhonov regularizations are

equivalent under ridge regression - we can express Ridge in a more ”intuitive and interpretable form”

:

β̂ridge = argmin
β

N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

subject to

p∑
j=1

β2
j ≤ r

We can now clearly see how Ridge regularization essentially constrains the coefficients to some squared

norm. Ridge regularization requires that the predictors are standardized in order to prevent an unfair

shrinking between them. In fact, Ridge constrains the size of the coefficients using a squared l2 norm:

s.t. β2
1 + ...+ β2

p < r ; if one (or more) of these variables is scaled differently than the others, this

will be reflected in the magnitude of βs and induce unfair penalisation; we mitigate this problem by

standardizing all factors. Consequently, the intercept is not penalized by ridge 35. The estimation

is a two steps procedure : After standardizing the predictors, one should first set the intercept as ȳ

then estimate the other coefficients by ridge penalization. This regularization method has a closed

form 36 : β̂R =
(
X⊤X+ λI

)−1
X⊤y . We can clearly see from the closed form solution how ridge

mitigates ill posedness by adding to the Gramian matrix a diagonal matrix. For ill-posed systems due

to multicollinearity, the Gramian matrix is singular, adding to it a diagonal element transforms it to

an invertible matrix (Non-singular).

As explained Ridge solves ill-posedness, accordingly, one can prove algebraically, using the Singular

value decomposition of X, that the Ridge regression is nothing more than some scaled version of the

pseudo inverse solution which I introduced previously. Concretely, Setting aside algebraic manipula-

tions 37 , ridge regression estimators can be written as β̂ridge = V
(
Σ2 + λIn

)−1
ΣU⊤Y ; while, the

”pseudoinverse” solution in the context of a linear regression is βpseudoinverse = X+Y = V Σ−1UTY =

35For some β0 +
∑

βjXj regression model with standardized (more precisely centered) predictors we get E[Y] = β0.
Thus for estimation purposes, we do not penalize the intercept and we require it to be Ȳ

36The closed form solution of ridge regression is found by simply deriving with respect to β the objective function .
This is feasible as the function is convex and involves a simple quadratic function

37Using Singular Value decomposition and simple algebraic and matrix manipulations; one can prove:

21

V
(
Σ2
)−1

ΣU⊤Y 38 . Comparing both formulae we clearly see that the ridge estimator is equivalent

to a scaled pseudoinverse estimator by Σ2

Σ2+λIn
∈ [0,1]. For λ = 0 both ridge and pseudoinverse co-

efficients are equivalent, and as the penalty term λ increases, the ridge coefficient converges to 0. In

addition, expanding the last ridge estimator formula, β̂ridge = Σ2

Σ2+λIn
βpseudoinv =

{
s2i

s2i+λ

}
βpseudoinv

39 one can infer the dynamics of the ridge regression:Ridge estimator shrinks as the squared singular

values increase, and since the Since Σ2 =
{

s2i
s2i+λ

}
is the covariance matrix of the demeaned predictor

X 40, and because its columns are indicative of the amount of variance within each principal compo-

nent; Ridge regression is essentially, a regularization method that penalizes smoothly 41 low-variance

Principal components directions.

The lasso regularization is a Tikhonov regularization method with a l1 normed penalization; which

is defined as ArgMinx ||Ax − b||2 + λ∥|x||1. In the particular context of linear regression, lasso is

formalized as : β̂lasso = argmin
β

{
1
2

∑N
i=1

(
yi − β0 −

∑p
j=1 xijβj

)2
+ λ

∑p
j=1 |βj |

}
. Or equivalently as

an Ivanov regularization :

β̂lasso =argmin
β

N∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

subject to

p∑
|βj | ≤ t.

The same rules of estimation apply on Lasso Regression. The estimation procedure is done in two

steps : First we compute the intercept, then estimate the other coefficients. However, Lasso does not

have a closed form solution, as the objective function is not differentiable. There are different numerical

methods that solves this optimization problem, I propose, the accelerated proximal gradient descent

method which I explain in details in the Numerical Methods chapter. Lasso Regression is widely used

in asset pricing modeling primarily due to its inherent feature selection capability 42 making the model

β̂ridge =
(
X⊤X+ λIp

)−1
X⊤Y

=
(
VΣU⊤UΣV⊤ + λIp

)−1
VΣU⊤Y

=
(
VΣ2V⊤ + λIp

)−1
VΣU⊤Y

=
(
VΣ2V⊤ + λVV⊤

)−1
VΣU⊤Y

= V
(
Σ2 + λIn

)−1
V⊤VΣU⊤Y

= V
(
Σ2 + λIn

)−1
ΣU⊤Y

38We have discussed the pseudoinverse previously from a pure linear algebra point of view using Ax=b. In the context
of linear algebra, nothing changes, but instead of writing A we write X,our factor matrix, and instead of x we write β
the coefficients matrix and finally instead of b we write Y. Thus x = A+b is written as β = X+y (Refer to Figure R1 -
for more information)

39For s2i the singular values the ”stretching” Sigma matrix
40Using the SVD of X ,XTX/N , the covariance matrix is equal to VD2VT .Since, the covariance matrix is symmetric,

then the V and D2 matrices correspond to the covariance matrix’s eigenvectors/values. This is an important result in
Principal component analysis; whereby the eigenvector and eigenvalues of the covariance matrix of the demeaned X are
indicatives of the PCs and their relevance; it is reviewed in the following chapters

41Penalty is smoothed by the tuning parameter λ
42Feature selection involves the elimination of certain features while retaining others

22

Figure 3: Illustration of different penalty contours
∑p

j=1 |βj |q ≤ 1 for different values of q on a 2
dimensional parameter space. As q decreases the contour of the penalty promotes increasing sparsity
in the coefficients.

more interpretable.

Specifically, Lasso Regression employs a least squares approach, effectively nullifying ”irrelevant”

coefficients43. One can interpret the sparsity of the result both algebraically and graphically. In fact,

assuming a linear model with an l1 penalization,the objective function of our problem is min yT y −

2yTxβ̂ + β̂xTxβ̂ + 2λ|β̂|. For β̂ > 0, the solution has a closed form β̂ =
(
yTx− λ

)
/
(
xTx

)
which

decreases as l1 regularization tuning parameter λ increases until reaching β̂ = 0; and for β̂ < 0,

the solution has also a closed form, β̂ = (yTx + λ)/(xTx) which increases as the lasso regularization

parameter increases, until β̂ = 0 is reached. We hence, ultimately expect sparsity when penalizing

using lasso. This is contrary to the squared squared l2 normed ridge penalty which has the following

closed form solution β̂ = yTx/
(
xTx+ λ

)
for both, β < and > 0 ; the β̂ here , however, does not

decrease specifically to zero as regularization grows (Note: The coefficient does decrease, but not to

zero as was the case for l1 regularization). In addition, one can see that the sparsity of lasso coefficients

arises from the distinctive shape of the l1 penalty. This characteristic is a direct result of the contours

of the l1-normed penalty, where decreasing the degree of the lp norm is associated with an increased

expectation of sparsity.

By controlling the size of the coefficients, lasso regression does solve ill-posedness. However, it

becomes unstable under perfect collinearity for two identical vectors in the design matrix. One can

illustrate this result graphically in a two dimensional parameter space: Specifically, in the case of an

ill-posed problem arising from multicollinearity, leading to an underdetermined system, the objective

function is depicted as an ”infinite” ellipsoid.

43Subtlety: In this context, ”Irrelevance” does not imply ”uninformative” or ”statistically independent.” Instead, it
is defined within the framework of Lasso regression. Lasso regression may eliminate informative features if it perceives
them as irrelevant to the least squares minimization objective.

23

Figure 4: Mutlicollinearity might induce loss function’s ellipsoid to degenerate wherein each point on
the ellipsoid is now represented by a line

Parallel lines represent the loss function; which due to collinearity result in a ”degenerate” ellipsoid

(One can imagine a horizontally squished and infinitely elongated ellipsoid where each point is a now

a line). Importantly this representation depicts instability under multicollinearity because the lasso

penalty represented by a square , cannot solve for loss functions that are parallel to its contours (There

are infinitely many solutions). This is coherent, since, for equivalent features, any variable selection

method will arbitrarily select a matrix.

To resume, ridge regression shrinks the coefficients without performing feature selection while

lasso regression results in variable selection, but may fail to provide stable solutions under particular

cases of perfect multicollinearity. Hence, Elastic Net Regularization emerges as a middle ground

solution between ridge and lasso. This method is a lp normed regularization that combines both L1

and L2 penalties in an additive manner. Elastic Net regression is formally represented as: β̂EN =

argmin
β
{ 12
∑N

i=1

(
yi − β0 −

∑p
j=1 xijβj

)2
+ λ

∑p
j=1

(
ρβ2

j + (1− ρ) |βj |
)
, with ρ a tuning parameter ∈

[0, 1]. Intuitively, the dynamics of this method become apparent when conjecturing from the contour

of the elastic net penalty in a two-dimensional parameter space representation (see Figure 5). These

contours promote sparsity as they look like the l1 squared penalty, yet, the slight curvature along their

sides helps alleviate instability caused by multicollinearity, preventing the degenerate loss function

from being parallel to its contours.

Figure 5: In a two dimensional coefficients space, the restricted Elastic Net penalty takes this form
(Refer to Ivanov Regularization for an explanation of ”restricted” penalties).

Thus from one side, by introducing absolute values, this penalization introduces sparsity and is a

feature selection method; and from the other, the squared penalty assures the stability of the solution,

24

even under perfect multicollinearity with equal features. Like for lasso, and for the same reasons,

elastic net regularization has no closed form solutions. I use Accelerated Proximal Gradient Descent

to estimate the coefficients; I discuss the details of this method in the ”Numerical Methods” chapter.

25

5 Dimension Reduction Methods

5.1 Principal Component Analysis

Principal components represent directions, in some vector space determined by some data. In Principal

Component Analysis (PCA), we define the components to represent orthogonal - and hence uncorre-

lated - directions for which the data exhibits some level of variance that spans the data space. For

instance, for some P-dimensional data; we can represent P directions 44 ordered by the amount of vari-

ance they capture. The first principal component corresponds to the direction of maximum variance,

and each subsequent component captures orthogonal directions of decreasing variance.

Ultimately, principal component analysis is used as a dimension reduction technique by picking,

among the PCs, the directions that exhibits most variance, and leaving out other directions.

Briefly, Principal Components estimation can be computed by following these three steps:

1. The initial step involves centering the design matrix. This is done for interpretational purposes

and for simplicity, it is not necessary in practice 45.

2. Points are projected onto the first principal component, and the distance between the points and

their projections is minimized to determine PC1.

3. Additional principal components are determined by selecting directions that are orthogonal to

the initially found PC1. We iterate until the directions span the data space.

Mathematically, given some N -by-P design matrix, one can represent the principal components

by some P -by-P dimensional unit vector w⃗ 46; the points in the P -dimensional feature space are

defined as −→xi ; the projection of −→xi on the PC is (x⃗i · w⃗) w⃗ 47 and the distance between the point

and its projection - also called the residual - is ∥−→xi − (w⃗ · −→xi) w⃗∥
248 . As mentioned, principal com-

ponent analysis ultimately aims at minimizing the mean squared error of the residuals: MSE(w⃗) =

1
n

∑n
i=1 ∥x⃗i∥2−(w⃗ · x⃗i)

2
;49 Using matrix manipulations, one can prove that this mean squared residual

44That spans Rp
45That is because centering X, allows us to interpret XTX as the covariance matrix, which then permits the eigende-

composition of the XTX matrix. I will discuss this later in the my analysis of PCA estimation
46w⃗ represent the directional vectors of the principal components. Its dimension is P -by-P as it represents P latent

dimensions in some P dimensional feature space
47That is; we compute the dot product between −→xi and

−→w , and since −→w is a unit vector, we get a scalar that represents
the value on −→w which −→xi gets projected to. To get the actual vector on which −→xi gets projected, we multiply the inner
product by the directional vector −→w .

48The squared norm is used instead of the absolute value, because we want a differentiable residual
49That is because the residual can be reduced as such∥∥−→xi −

(
w⃗ · −→xi

)
w⃗
∥∥2 =

(−→xi −
(
w⃗ · −→xi

)
w⃗
)
·
(−→xi −

(
w⃗ · −→xi

)
w⃗
)

=−→xi · −→xi −−→xi ·
(
w⃗ · −→xi

)
w⃗

−
(
w⃗ · −→xi

)
w⃗ · −→xi +

(
w⃗ · −→xi

)
w⃗ ·

(
w⃗ · −→xi

)
w⃗

=
∥∥−→xi

∥∥2 − 2
(
w⃗ · −→xi

)2
+

(
w⃗ · −→xi

)2
w⃗ · w⃗

=−→xi · −→xi −
(
w⃗ · −→xi

)2
26

minimization is equivalent to maximizing the variance of the projections σ̂2 (w⃗ · −→xi) (i.e. the variance

of the distance between the origin and the points’ projection) ,which, in turn, is dependent on the

covariance matrix v = XTX
N of the design matrix 50 51 Principal Component Analysis can thus be

mathematically summarized as performing:

Argmaxww
T vw such that wTw = 1

That is, we maximize the variance of the projections wT vw such that the direction vectors defining the

principal components are unit vectors. This can be expressed as a Lagrangian problem : L(≾, λ) ≡

≾T≿≾ − λ
(
≾T≾− 1

)
Interestingly, we get that: vw = λw : Principal components are thus the

eigenvectors of the covariance matrix v = XTX
N , with λ ≥ 0 the corresponding eigenvalue matrix

52. Since the covariance matrix is symmetric then its eigenvector matrix is orthogonal; thus w ,

the principal components’ directions, are the eigenvectors of the covariance matrix that spans the

whole p-dimensional space and λ corresponds to the magnitude of variance in the direction of each

corresponding eigenvector. Hence, the (PC1) defined as the principal component along which the the

data exhibits the highest variance level, is the wj for which λj is the highest - the same logic follows

for subsequent PCs.

Dimension reduction using Principal Component Analysis consists of choosing the most relevant

direction among all the different directions. That is, for some P dimensional data space we would like

to find a Q dimensional subspace - defined by a subset of orthogonal PCs - that summarizes best the

data (More specifically , we would like to find the number of eigenvalues, Q) . There are different

ways to achieve this: One can for example compute the R2 ≡
∑q

i=1 λi∑p
j=1 λj

metric that quantifies the ratio

of variance explained by the subset of Principal components over the total variations in our model 53

; graph a scree plot of R2 with respect to λ and choose the lambda according to the shape of the plot

54; however this method is not rigorous. Instead, one can also treat Q (or, equivalently, the number of

since w⃗ · w⃗ = ∥w⃗∥2 = 1.
50MSE(w⃗) = 1

n

∑n
i=1 ∥x⃗i∥2 − (w⃗ · x⃗i)

2 = 1
n

(∑n
i=1 ∥x⃗i∥2 −

∑n
i=1

(
w⃗ · −→xi

)2)
the first term is independent of w , it is

thus not relevant to our Minimization problem , we end up with − 1
n

∑n
i=1

(
w⃗ · −→xi

)2
; Minimizing a concave function is

equivalent to maximizing a convex one, hence, we will instead maximize 1
n

∑n
i=1

(
w⃗ · −→xi

)2
. Since Var[X] = E[X2] −

E[X]2 ; we decompose the MSE Problem: as such
(
1
n

∑n
i=1
−→xi · w⃗

)2
+ σ̂2

(
w⃗ · −→xi

)
; and since the X is centered the first

term cancels out and we end up by maximizing the variance of the projection: σ̂2
(
w⃗ · −→xi

)
. Minimizing the residuals is

thus equivalent to maximizing the variance of the projections. In turn, the variance of the projection can be expressed with

respect to X’s covariance matrix: σ̂2
(
w⃗ · −→xi

)
= 1

n

∑
i

(−→xi · w⃗
)2

= 1
n
(xw)T (xw) = 1

n
wTxTxw = wT xT x

n
w= wTvw

51This equivalence between residual minimizing and variance maximizing can be also demonstrated by the Pythagorean
theorem: Consider for simplicity finding PC1 only: since xis are fixed and since the projections (x⃗i · w⃗) w⃗ form a

triangular rectangle, we apply the Pythagorean theorem:

(x⃗i · w⃗) w⃗︸ ︷︷ ︸
A


2

+

−→xi −
(
w⃗ · −→xi

)
w⃗︸ ︷︷ ︸

B


2

=
[
x2
i

]︸︷︷︸
C

; Since A is fixed

any increase in B corresponds to a decrease in C and vice versa.
52Since the elements of covariance matrices are always positive. Then the eigenvalues will be positive
53This metric is ∈ [0, 1]; The bigger it is the more is the sub-model representative
54One can choose the λ , on the ”elbow” of the scree plot. That is the point above which the screen plot does not

27

eigenvalues) as a hyper parameter of the model and use cross validation for optimal selection (Detailed

illustration is available in the empirical analysis chapter).

Principal Component Regression is simply a linear regression method applied on the Principal Com-

ponents of the predictors. This method is used mitigate the problems of ill-posedness and overfitting

already discussed ; by using a subset of principal components. Instead of using a penalized Lp regular-

ization method, regularization is explicit and is done prior to fitting. This method solves overfitting,

because, as for lp regularization methods, we reduce the complexity and hence control overfitting by

choosing a subset of predictors. And ill-posedness, because, by applying PCA and selecting a subset

of features, we mitigate some issues related to ill-posedness; Notably, linear dependence in the Design

matrix is automatically corrected as the Principal components are uncorrelated. In addition,choosing

a subset of predictors can solve underdetermined ; P >> N ; design matrices.

Principal Component Regression first requires finding Q Principal Components using PCA. The

subset of principal component spans a ”latent” feature space. PCR consists of performing a linear

regression using the new latent factors as covariates. Concretly, after identifying the orthogonal prin-

cipal components (PCs), we perform a linear regression in a space defined by PC1, ..., PCQ. In this

transformed space, each point from the original feature space is now represented by coordinates deter-

mined by their projections onto the PCs. The resulting Q-dimensional estimated parameter can then

be projected back to the original P - dimensional space by multiplying it with wQ
55 .This multiplication

is intuitive when considering wQ as a Factor Loadings, transforming latent factors to observed ones

(This interpretation of wQ as Factor Loadings is typical of Factor Analysis and Probabilistic Principal

Component Analysis, however I will not delve into these concepts as they are beyond the intended

scope of this study). In order to test/tune this regression, the testing data (i.e. the testing design

matrix) is regressed on the already retrieved PCs.

Principal Component Analysis is widely used in high dimensional factor modeling; However, there

exists a spectrum of efficient alternative dimension reduction techniques. The Probabilistic Principal

Component Analysis (PPCA), for example, is a method derived from PCA that assumes a latent

variable model with probabilistic assumptions on the latent variable. Factor analysis, for instance, is

another ubiquitous method, that finds latent factors similar to PPCA, but assumes a non-isotropic

Gaussian distribution for the covariance matrix. Fourier Analysis, for example, interprets the data as

the sum of Fourier basis functions to compute latent factors. The Wavelet decomposition method too,

is another notable feature selection method, where wavelets functions are exploited using topological

methods to determine the latent components etc...

exhibit sharp variations
55Note, wQ the principal components directional vector - or equivalently, the eigenvector matrix - is a matrix that

defines Q dimensions in a P -dimensional space. It is thus a P -by-Q matrix, defined as a transformation from RQ → RP .
By multiplying βQ by wQ we are projecting the matrix to the original P dimensional space.

28

Principal Component Analysis, however, remains the most documented method in asset pricing

feature selection applications, because it is interpretable, has applications in pure linear algebra, and

importantly, because it provides an ordered list of Principal components: Unlike other dimension

reduction techniques where the ”relevance” of one latent dimension with respect to another is not

explicitly indicated; PCA provides an ordered list of uncorrelated dimensions based on the level of

variance in each PC direction, which facilitates dimension reduction.

One major drawback of Principal Component Analysis, is that while the resulting Principal Com-

ponents (PCs) are uncorrelated, they are not guaranteed to be statistically independent.56 Although

the resulting PCs from PCA are linearly independent orthogonal directions, ensuring null correlation

when feature points are projected onto them, this does not imply statistical independence. In fact,

a null correlation is a second order degree of independence, while statistical independence can imply

higher orders of dependencies. From an information theory point of view, for example, one can argue

that, correlation ”does not reflect the information distance” between two variables (Taleb, 2023) [27].

It’s important to note that variables can be both statistically independent and uncorrelated when

exhibiting only second-order dependence, but this is unlikely in the case of the features used in this

dataset, given their intricate nature and their complexity. To address this limitation, I perform another

dimension reduction method that specifically aims at finding higher orders of statistical independence

between the latent factors.

5.2 Independent Component Analysis

Independent component analysis is a blind source separation method typically used in the field of

signal processing in order to retrieve statistical independent sources of some set of signals (See ap-

pendix, for a graphical representation of ICA). I use Independent Component Analysis to retrieve

statistically independent factors. Statistical independence is a strong measure of dependence57: It

quantifies how much the occurrence (or non occurrence) of an event affects the occurrence (or non

occurrence) of another. We define X1, ..., XN random variables to be ”statistically independent” when

P (x1, . . . , xN) =
∏N

i=1 P (xi).

The independent component analysis is built upon the following framework: Consider some ob-

served multidimensional data represented by x (P-by-N) , to be some linear mixture of statistically

independent sources s of dimension Q-by-N. Thus, x = As with A a P-by-Q linear mixing matrix with

both A and s unknowns. This method assumes that what we observe is an unknown linear transfor-

56Uncorrelated variables implies linear independence . While statistical independence, between variables X and Y for
instance, implies that f(X,Y) = fX(X) · fY (Y): This means that none of the variables explains the other. Clearly,
statistical independence is a much stronger assumption

57This is in contrast with the correlation metric. Which is considered a weak dependence measure from a statistical
point of view

29

mation of unknown statistically independent latent factors; and the goal of ICA is to retrieve ŝ = Wx

with W = A+, and hence obtain the statistically independent source factors defining the observed

features. The issue with x = As however, is that it is an Ax = b problem with both X and A being

unknown, and this is, a priori not solvable.

Independent Component Analysis, proposes a strategy to find W (and hence retrieve ŝ): First,

Consider the Singular Value Decomposition of A: A = UΣV ⊤,which can be studied as a rotation-

stretching-rotation transformation, and its ”inverse” 58 expressed as W = V Σ−1U⊤

Figure 6: Graphical representation of the Singular Value Decomposition of the linear mixing matrix
A, as well as its Pseudoinverse W . Hence, x = As can be viewed as an SVD transformation from x to
s (and vice versa)

Importantly this Singular Value Decomposition of the mixing matrix illustrates the idea that x = As

can be viewed as an SVD transformation from s to x (and vice versa). Independent Component

Analysis’s strategy unfolds in two stages: First, one needs to study the covariance of the observed

data to find U and Σ. Independent Component Analysis assumes demeaned variables and introduces

a crucial assumption: whitened covariance of sources, i.e. E(sT s) = I.

By doing so, we have simplified our Ax = b problem : In fact, we can now express the covariance of

our observed variable E
(
xx⊤) = UΣ2U⊤ independently of v and s 59 and since E(xxT) is a symmetric

matrix and it is always diagonalizable such that E
[
xx⊤] = EDE ,with E and D corresponding to

the eigenvectors and eigenvalues matrices. Thus, by imposing the whitening assumption we have now

found both U and Σ such that ŝ = Wx = V Σ−1U⊤x gets reduced to ŝ = V D− 1
2ETx with now only

V being unknown.

Independent Component Analysis’s second stage is to exploit the statistical independence of sources

in order to find V . In fact,V is a rotation matrix determined by some angle parameter θ (In a two

dimensional space ,for instance, a rotation matrix V takes the form

 cos(θ) − sin(θ))

sin(θ) cos(θ)

 where θ

is the only defining variable). In the ŝ = V D− 1
2ETx problem, V represents the last rotation from a

58”Pseudo-inverse” is a technically better suited term since W is a double sided inverse if and only if it has Full Rank
. I use the term ”inverse” for simplicity

59E
(
xx⊤)

= E
(
Ass⊤A⊤)

= E
(
UΣV sstV ΣU⊤)

= UΣV ⊤E
(
ss⊤

)
V ΣU⊤, since V T = V −1 (Since it is an orthogonal

matrix) and E(ssT) = I then E
(
xx⊤)

= UΣ2U⊤

30

rotated-then-stretched source s to x (refer to figure). Hence, computing V can be viewed as finding

the angle parameter of the last rotation that gives us statistically independent sources. ICA exploits

the independence assumption to find the angle: Finding V can be formalized as finding θ such that

some metric of independence is minimized. Information theory provides us with this metric: In fact,

mutual information is an adequate metric here as it computes the information distance between two

distributions; i.e. quantifies the amount of information one variable provides about another; and

is thus a good proxy for statistical independence. However, since sources are usually more than

two, ”multi-information”, a generalization of the mutual information, is better suited. Defined as

I(y) =
∫
p(y) log2

P (y)∏N
i=1 p(yi)

dy, this metric is an ideal proxy to statistical independence. Now, one can

find rotation matrix V and solve ICA by minimizing I(ŝ) where ŝ = V D− 1
2ETx . That is, finding

the θ such I(ŝ) is minimized. This minimization problem is not trivial, a reduced form of I(ŝ) is used

instead 60. Thus V = Argminv
∑

i H
[(

V D− 1
2E⊤X

)
i

]
. Having found V , one can find W and s the

statistically independent factors.

In this paper, observations x are the features (Those are P , N dimensional feature vectors) and

sources s represent the reduced latent features (hence , s is a Q by N matrix). The linear transformation

A, essentially transforms the sources which are points in the RQ reduced latent feature space to signals

(Those are the points we observe in the original feature space) in a new separate Rp space spanned

by the known original features. A’s columns thus represent the latent direction of the observations in

the original feature space.

While principal components are orthogonal, the independent components resulting from an ICA

are not (Unless sources dependence is limited to second order). This can be clearly illustrated in a 2

Dimensional ICA; where the signals are two dimensional features (Above 3 Dimensions this cannot be

graphically illustrated). Below is a graphical representation of the difference between PCA and ICA,

using my dataset, on two factors.

60The reduced form is obtained by noting that the multi-information metric can be expressed as I(y) =
∑

i H [yi] −
H[y], thus I(ŝ) =

∑
i H

((
V D− 1

2 ETX
)
i

)
− H

(
V D− 1

2 ETX
)
. Given the following entropy property: for any

continuous random variable X and transformation A the differential entropy H(AX + b) = H(X) + log|A|. Then

I(ŝ) =
∑

i H
(
V D− 1

2 E⊤x
)
i

)
−

(
H

(
D− 1

2 E⊤x
)
+ log2 |V |

)
, since det(V) = 1 (Property of a rotation matrix) then

log2 |V | = 0 and since D− 1
2 E⊤X is constant and independent of V we can neglect it. We end up with a simplified

version of I(ŝ) : I(ŝ)|simple =
∑

i H
(
V D−1/2E⊤X

)
i

)

31

Figure 7: Graphical Representation of PCA vs ICA using a subset of Factors; notably Share turnover,
Earnings to Price Ratio and the Term Spread on returns between 2001 and 2020. The Latent directions
are different. In this example, Independent Components seem more relevant as they represent better
the data.

((a)) Independent Component Analysis
Recovered Signals

((b)) Principal Component Analysis Recovered
Signals

Figure 8: Principal Components vs Independent Component Tested on a subset of the Dataset

This application of ICA on a subset of the data is indicative of the power and potential relevance of

this method relative to the PCA. In fact, one can see that the PCA might not be particularly effective

for orders of correlation above 2 as the above data seems to exhibit.

As for the Principal Component Regression, I use the Independent Components found in ICA as

covariates of a linear regression. And as for PCR, the IC-based regression model is tuned on the valida-

tion set by changing the Number of Independent Components. However, the main drawback of ICA, is

32

that the independent components are not explicitly sorted with respect to their relevance , unlike PCA

(This is, in fact, is the reason for which PCA is ubiquituous in Dimension reduction methods applica-

tions). ICA provides no indication of the relative relevance among subsets of independent components,

and trying for different combinations is computationally infeasible 61. I thus use the power data method

proposed by Hendrikse et al. (2007)[10] . The rationale is as follow: The variance of the signals (i.e.

the observed features) can be expressed with respect to the different independent component contri-

butions. In fact, for some 1-Dimensional signal (P-by-1) we can express the variance of standardized

signals as V ar(X) = E(X2) =
∑P

i=1 E
[
x2
i

]
=
∑P

i=1 E
[
(ai · s)2

]
=
∑Q

j=1

{
E
[
s2j
]
·
∑P

i=1 a
2
i,j

}
for P

the number of signals and Q the number of latent sources 62. Hence, I compute for each j ∈ {1, Q},

(E
[
s2j
]
·
∑P

i=1 a
2
i,j) and choose the component j for which the contribution is the highest.

61For my dataset comprising 912 factors, testing all different of features combinations requires
∑912

k=1

(
912
k

)
itera-

tions. This is infeasible
62Note: In this paper, the signals are multidimensional. I use 1-Dimensional signals for simplicity

33

6 Robust Linear Estimation

I have, thus far, only presented the least squares function as the objective function. This approach

may not be robust in the context of return forecasting. In fact, returns typically exhibit large tail

behaviors, which translates to having outliers in the dataset. Outliers are observations that have the

property to disrupt patterns. They are particularly damaging in least squares estimation methods as all

observations are weighted equally when estimating the model. In addition, from a probabilistic point

of view, ordinary least squares estimation is no more a relevant with outliers, as the Gauss Markov

assumption of homoscedasticity is not respected, implying that the linear regression is no more the

Best Linear Unbiased Estimator (BLUE).

One can remove them before estimating the model. This approach however assumes that outliers

are erroneous, not representative samples of the underlying model; this is typically the case when there

is a typo in the data. However, this is not the case with return outliers.

Alternatively, one can modify the model, opting for another model where outliers do not disrupt

the pattern. I pursue this in subsequent chapters by introducing non-parametric smoothing methods,

notably generalized additive models and Trees.

Another approach involves employing a different estimation method. In this paper, I choose to test

the Huber loss function instead of a quadratic function to mitigate the issue of outliers. Huber loss is

formally defined as follows:

Lδ(y, f(x)) =


1
2a

2

δ ·
(
|a| − 1

2δ
) =


1
2 (y − f(x))2 for |y − f(x)| ≤ δ

δ ·
(
|y − f(x)| − 1

2δ
)
, otherwise.

with a the residual y−f(x) and δ > 0 the threshold tuning parameter. This loss function dynamically

weights each observation in the estimation process: it computes the squared error of residuals when

observations are not far way and instead computes the absolute value for outliers. Outliers are deter-

mined by the threshold parameter; which defines the critical level of error for which the observation

would be considered an outlier. It is a tuning parameter set by cross validation.

Considering a well-defined model without outliers, introducing outliers would result in a higher loss

on the observation when using squared loss. Huber loss address this issue by assigning less weight to

outliers. In both Mean Squared Error (MSE) and Huber loss functions, the introduction of an outlier

leads to an increased loss, necessitating adjustments to the parameters. However, Huber estimation

ensures that the change in parameters is not as large compared to squared loss estimation. Huber’s

loss is particularly designed this way to be smooth at δ ; it is continuous at δ, lima→∞ Lδ(a) =

lima→−∞ Lδ(a) = Lδ(δ), and differentiable at δ limh→0+
Lδ(δ+h)−lδ(h)

h = limh→0−
Lδ(δ+h)−lδ(h)

h = δ;

34

and thus easily optimizable 63. In this paper I apply Huber, along quadratic loss,when evaluating

linear models. Comparative results are reported in the Empirical Analysis Chapter.

((a)) Graphical Representation of outliers effect
on estimation.

((b)) Graphical representation of Huber Loss
estimation.

Figure 9: Huber Loss mitigates the effect of outliers on a 1-Dimensional subset of the dataset.

63This is why the loss is not simply defined as Lδ(a) =

{
1
2
a2

|a|
. This loss function is not smooth at δ and thus is

not the best candidate objective function for an optimization problem

35

7 Numerical Methods

I encounter in this paper different optimization problems that do not have closed forms: We have

already seen that the lasso regression, the elastic net regression, the group lasso and the Huber loss

function (and its combination with other penalization method) do not have closed form solution. In

this paper, I propose to solve all of the following methods using an Accelerated Proximal Gradient

Descent method.

Accelerated Proximal Gradient Descent method. In this paper, I use the accelerated prox-

imal gradient descent algorithm in order to solve the various proposed regularized and non regularized

convex loss functions. This algorithm combines two different generic convex optimization methods,

namely the accelerated gradient descent and the proximal gradient descent methods.

The proximal gradient descent is a method to optimize convex non smooth functions. There are

different other methods that also minimize non smooth functions, but what makes proximal method

interesting is its speed. Hence, while the ubiquitous sub gradient method64, for instance, converges at

a rate of o(1
ϵ2), the accelerated gradient descent has a speed of o(1ϵ) (It converges as rapidly as the

vanilla gradient descent). This optimization method relies principally on two pillars:

The first is the Moreau Proximal Point Algorithm (PPA) typically applied in the optimization of

non-smooth functions. Formally, for some Minx f(x) problem, given a non-smooth function f(.), the

PPA algorithm is defined as such: xt+1 = proxγf (x
t) = Argminy γf(y) +

1
2 ∥x

t − y∥22.65 That is, the

PPA defines some simple convex and differentiable function of y, γf(y)+ 1
2 ∥x

t − y∥22, which is tangent

to f(x) at x(t); such that its minimum is easily derivable. At each iteration, the new x(t+1) is the

minimizer of the tangent function at x(t) , and this repeats until some convergence criterion is met.

The prox operator simply refers to this minimization subproblem defined by this algorithm.

Figure 10: Illustration of Moreau Proximal Point Algorithm on some function f(x) = |x|. The proximal
operator defines the red tangent simple smooth convex function and finds its minimum

64The subgradient method solves the problem of non differentiability of some objective function f(.) by computing a
subgradient of f(.) at xt, gt ∈ ∂f(xt) and computing xt+1 = xt − αtg(t) at each iteration t

65Here, the ”y” is used to represent any variable.

36

Above, is an illustration of the Proximal Point Method: for f(x) = |x|, a non differential function.

This is a representation of a single iteration of the algorithm where x(t+1) is the minimizer of a

differentiable function defined by the proximal operator.

The second pillar of the proximal gradient descent method lies in the equivalence between the

gradient descent algorithm, expressed as x(t+1) = x(t) − α∇f
(
x(t)
)
, and the minimization of the

Taylor approximation of f(.) aroundx(t) considering ∇2f(x) = 1
αI.

In fact, this becomes clear when solving the Argmin of the Taylor expansion of f(.) around x(t):

Argmin
y

f
(
xt
)
+∇f

(
x(t)
)T (

y − x(t)
)
+

1

2α

∥∥∥y − x(t)
∥∥∥2
2

We find the minimum by equation the gradient of the objective function to zero 0 = ∇f
(
x(t) + 1

α

(
x(t+1) − x(t)

)
=⇒ x(t+1) = x(t) −α∇f

(
x(t)
)
, which corresponds to the gradient descent method. Therefore, instead

of employing the gradient descent algorithm, one can iteratively determine the minimum of the Taylor

approximation of the objective function at a specific point until a convergence criterion is satisfied.

Figure 11: Graphical representation of the equivalence between Gradient descent and Taylor Approxi-
mation minimization. Instead of using Gradient Descent, one can minimize the Taylor approximation
(Dotted curve) of the objected function (solid curve). This graph illustrates only one iteration.

To resume, the two pillars suggest: First, that non smooth functions can be optimized by using

proximal operators at each iteration ; and Second that gradient descent on smooth differentiable

functions is equivalent to minimizing the Taylor approximation of our function at each iteration.

Proximal Gradient Descent merges both methods: In fact,For some function f(x) = g(x) + h(x)

with g(.) being convex and differentiable and h(.) convex but non differentiable; Proximal gradient’s

approach involves iteratively minimizing ”sub-problems” formed by the sum of the Taylor approxi-

mation of the convex and differentiable function g(x) and the convex but non-differentiable function

h(x). Concretely; it consists of approaching the problem as if it were a gradient descent minimization

37

on some smooth function while keeping the non-smooth function untouched.

x(t+1) = argmin
y

ḡt(y) + h(y)

= argmin
y

g(x(t)) +∇g(x(t))T (y − x) +
1

2α
∥y − x∥22 + h(y)

= argmin
y

1

2α
∥y − (x− α∇g(x(t))∥22 + h(y)

This is equivalent to the Proximal operator of h(.) at (x(t) − α∇g(x(t))) with a proximal parameter

αt. Formally, the Proximal Gradient descent is defined as such:

First initialize x(0) , x(t) = proxh,α(t−1)

(
x(t−1) − αt−1∇g

(
x(t−1)

))
, t = 1, 2, 3, . . . , iterate until

convergence

This hybrid optimization has a faster convergence rate than the standard proximal point method

for non smooth functions (Tibshirani). Hence, whenever, the non-smooth objective function can be

transformed into a composite optimization problem with smooth and non smooth components; it is

preferable to use PGD than PPM for computational speed.

On the other hand, the accelerated proximal gradient descent, incorporates acceleration into the

optimization. Introduced by Nesterov, the Accelerated Gradient Descent is a modification of the

standard Gradient descent method designed to achieve a faster convergence rate. Gradient descent can

exhibit very slow convergence depending on the shape of the objective function 66; This is clearly the

case when the convex objective function has a minimum in a ”narrow valley” which causes the gradient

descent to zigzag very slowly towards it 67. In order to mitigate this problem, Nesterov incorporates

memory into the Gradient descent method: For each iteration, the new direction incorporates the

”momentum” of previous directions; this has the effect of tilting ”degenerate” directions to ”coherent”

and ”well behaved” ones. Formally, Nesterov is defined as such: For an unconstrained smooth and

convex minimization problem: Initialize y(0), then compute x(t) = y(t−1) − α(t)∇f
(
y(t−1)

)
for y(t) =

x(t) + t−1
t+2

(
x(t) − x(t−1)

)
and iterate for t = 1, 2, . . . until convergence.68 Ultimately, this method is

faster than the Gradient descent method.

The Accelerated Proximal Gradient Descent Algorithm; simply incorporates the Nesterov Gradient

descent to the Proximal Gradient descent. Formally, it is defined as such:

Initialize x(0) and y(0) = x(0) ; then compute x(t) = proxα(t)h

(
y(t−1) − α(t)∇g

(
y(t−1)

))
for y(t) =

x(t) + t−1
t+2

(
x(t) − x(t−1)

)
; and iterate for t = 1, 2, . . . until convergence.

This optimization method is perfectly suited for our optimization problems as our objective func-

66And the set hyperparameters
67Or when a concave function has a maximum in a narrow space
68Geometrically, Nesterov Gradient descent simply extrapolates the previous direction by some ”memorized” momen-

tum (depending on previous trajectories); then follows the negative gradient

38

tions can be decomposed as smooth and non smooth function; and , importantly each of the non-smooth

functions used in this paper has its own closed form proximal operator. This fact is important, as

Proximal Gradient Descent computes the proximal operator of h(.) at each iteration. (See: Appendix

for Closed form prox(.) of each of the non-smooth functions).

39

8 Generalized Additive models

A generalized linear model (GLM) is a flexible extension of the ordinary linear regression model and

can represent a variety of distinct regression models. The configuration of a Generalized linear model

is the following :

• A linear predictor η(x) = β0 +Xβ. i.e. covariates are defined as a linear model, upon which is

build the GLM.

• A random component is defined as following some distribution from the exponential distribution

family 69. For example, the ordinary linear regression model defines the random component

ϵ ∼ N(0, σ2), and as a result y|x ∼ N(Xβ, σ2)

• A link function that links between the random E[Y |X] and the covariates. The link function is a

bijection that transforms E[Y |X] to the linear predictor η(x). For instance in a linear regression

µ(x) = β0 +Xβ, the link function is the identity function.

In summary, the Generalized Linear Model is a way to express different regression models based on

some linear predictor assuming some random component and given some link function

I will focus in this paper, on a more generalized version of the Generalized linear models, notably

the Generalized additive model (GAMs) . Generalized additive models are defined as conditional

expectation regressions linked to the sum of arbitrary smooth functions (one for each variable) by a

link function. Formally, it is defined as:

g(E(Y |X)) = β0 + f1 (x1) + f2 (x2) + · · ·+ fp (xp)

where g(.) is the link function; fj(.) are unspecified smooth functions , and m is the number of factors.

fj(.) are arbitrary functions that can change from one predictor to another, provided that it is smooth

70 ; and what makes this model special is that it is flexible: fj(.) can , for example, take the form of

some fully-parametric functions (polynomial regressions, linear regressions etc...) , expansions of basis

functions (Natural K-splines, Sigmoid basis expansions etc...) , or fully non-parametric smoothing

functions (Nadaraya-Watson Kernel regressions, K-NN etc...) ... the list is expansive. Generalized

additive models also assume E[Y] = β0 and E [fj (Xj)] = 0 in order to make the problem identifiable.

Essentially, if we do not assume the following, we end up with ”Concurvity” - The generalization of

collinearity in an additive model framework- that is, there are infinitely many parameters that gives

69Do not confound with exponential distribution. An exponential distribution family is a set of probability distribution
function expressed as fX(x | θ) = h(x) exp[η(θ) · T (x)−A(θ)]

70The smoothness of the functions refers to their continuity in their first and second order derivatives. Hence fj() can
be represented by any C2 function

40

us the same regression function. g(.) the link function, is the same as the one defined for Generalized

linear models; however, instead of linking to a linear predictor model it links to an additive model. In

addition; because, under GAMs, η(.) is no more a linear function, the estimation process changes71:

GAMs use instead a ”Back-fitting” algorithm to fit fj()s . Hastie et al. define the back fitting algorithm

as such: First Initialize: α̂ = 1
N

∑N
1 yi, f̂j ≡ 0,∀i, j. Then for: j = 1, 2, . . . , p, . . . , 1, 2, . . . , p, . . .,

f̂j ← Sj


yi − α̂−

∑
k ̸=j

f̂k (xik)


N

1

 ,

f̂j ← f̂j −
1

N

N∑
i=1

f̂j (xij) .

And iterate until convergence criterion is attained 72 (See Backfitting Algorithm section in Appendix

for an explanation of the underlying logic of this algorithm) For Sj some smoothing operator which

we choose according to the fj(.). In other words, the backfitting algorithm sequentially fits each factor

while keeping others fixed. Updating a function involves applying the fitting method to a partial

residual. For instance, if f1(.) and f2(.) are known, we can fit f3(.) by treating the partial residual as

a response in some smooth regression on x3. (Refer to appendix for detailed explanation)

We can clearly see that GLMs are special cases of GAMs, for fj(.) being linear in x, they only differ

in their estimation, in their speed and in their biasedness 73. I introduce both Generalized Additive

Models and Generalized linear models, because in this paper I present a penalized form of GAM which,

if penalized enough, may reduce to a GLM model. Moreover, I chose Generalized Additive models

to represent non-linear models because it is the best suited to my problem; it is a good compromise

between fully parametric non linear models and unstructured non-parametric smoothing methods .

In fact, on the one hand, even though fully-parametric models have been traditionally used in

factor modeling and despite the fact that their estimation error converges quickly as the number of

data increase74. The main problem is that it will always result in an approximation error if the

underlying conditional expectation is not exactly matching the model.

On the other hand, unstructured non-parametric smoothing methods (Those are regressions that

impose no assumptions on the the shape of the regression function) 75 can asymptotically capture

any true underlying conditional expectation function as their fitting approach is data-dependent, free

71We cannot use linear regression - as we did for GLM - for non-parametric fj(.)s - It does not make sense
72One can either specify a tolerance level, or some fixed maximum number of iterations
73GLM converge faster while GAM are less bias
74For instance, mean squared error ’s convergence of linear models is MSElinear =

σ︸︷︷︸
intrinsic error

+ alinear︸ ︷︷ ︸
approximateerror

+ O
(
n−1

)︸ ︷︷ ︸
estimationerror

(Shalizi,2021), this is derivable by using the Law of iterated ex-

pectations from MSE, essentially, there will always be some approximation error, even if we infinitely increase the
sample size. These MSE convergence property is generalizable to any parametric model (Shalizi, 2021[23])

75They are generally defined as: E(Y |X) =
∑n

i=1 yiw (x, xi, h) with w(.) some fully non-parametric function of some
tuning parameter h. Kernel regressions or K-NN are notable instances of unstructured non-parametric models

41

of any model restrictions. However , the main issue with these methods is that their estimation

error is dependent on p (the independent variables), and fitting these models may fall under the

curse of high dimensionality: Intuitively, for some sample of observations, fitting the model just by

looking at the data becomes increasingly difficult as the number of dimensions increase. Wassermann

(2006)[30], derives the Mean squared error asymptotics of unstructured non parametric methods as

:MSEnonpara − σ2︸︷︷︸
intrinsicerror

= O
(
n−4/(p+4)

)
︸ ︷︷ ︸

rateofconvergenceofestimationerror

, as having no approximation error but

with an estimation-error rate of convergence (to zero) dependent on the number of features i.e. this is

a formalized representation of the curse for dimensionality for unstructured non parametric methods.

Generalized additive models emerge as a perfect compromise between fitting well the data and not

falling in the high dimensionality curse trap: In fact, it is a structured non-parametric method that

uses non parametric smoothing functions fj(Xj) on each of the predictors ; the regression is no more

dependent on p parameters. Rather; what we have with GAMs is P non-parametric functions each

dependent on a single parameter. We thus fit a non parametric function - that minimizes its specific

approximation error - without suffering from a large estimation error due to high dimensionality -

as GAMs smooths P times on 1 dimension. For instance, for a simple GAM on p features, with

f1(X1), ..., fp(Xp) all being smoothing splines, Shalizi (2021) derives MSEadditive − σ2 = aadditive +

O
(
n−4/5

)
76: i.e. there still is some approximation error aadditive as the approximate error combining

all dimensions together has not been tackled by GAM, however, approximation error is better than

what we get for a linear model aadditive ≤ alinear
77 and we do not fall into any dimensionality problem

- the estimation error convergence solely depends on N not P (Note:O(n−4/5) in the formula) Another,

yet weaker, advantage of choosing GAMs is that they are interpretable models: By posing the problem

as an additive one, one clearly see the parts constituting the overall model, and thus conjecture the

dynamics of the model.

For these reasons I chose GAMs to modelize non-linearly the returns with respect to high di-

mensional factors. and choose to model the arbitrary functions with respect to second order splines

with k knots (i.e k + 1 intervals). The number of knots is a hyper parameter; which I tune us-

ing cross validation. Formally: Each fj(Xj) is modeled as θjp(x) with p(x) a second order spline

defined as β0 + β1xj + β2x
2
j + β3(xj − k)2+ with (xj − k)2+ a truncated power basis defined as

(x − ki)
2
+ =



(x− k1)
2 if x ∈ [k1, k2)

...

(x− kK)2 if x > kK

0 otherwise

Second order splines are chosen in this framework simply

76This derivation requires Taylor approximating the MSE and using Oracle assumptions
77Since Additive models ⊂ Linear models - this has been discussed in the statistical learning theory Chapter

42

because they represent standard flexible C2 functions 78 .They are fitted by least squares regression,

hence the smoothing operator Sj in the backfitting algorithm is the squared loss. Concretely, the

Generalized additive model will look like this:

g(E(Y |X)) = θ0 +

P∑
j=1

p (Xj)
′
θj

with g(.) = I the Identity function , P the total number of factors, and I assume that p(z1), ..., p(zj)

are all second order splines with K knots (Notice that there are no feature index to the spline functions

as all splines in this model are all the same for the different features; features differ in their coeffi-

cient θj). While generalized additive models mitigates the curse of high dimensionality, the model

can become highly parameterized, particularly with an increased number of knots, as the number of

parameters, k.(Order of the spline + 1), scales linearly, increasing by a constant factor of 3 for each

additional knot. Given the increased parametrization, which complicates model interpretation, and

considering my earlier discussion on regularization’s role in enhancing generalization, I employ the

Grouped Lasso Regularization method (Yuan, Lin 2005). Grouped lasso is, like Ridge and Lasso, a

Tikhonov Regularization, on an l2 normed (Non-squared) penalty. It thus follows the same rationale

discussed in the regularization section. Grouped lasso has however two distinctive features: First,

its penalty norm is l2 normed thereby inducing sparsity; this is clearly shown in the Lasso Chapter

79. Secondly, and importantly, it penalizes coefficients in batches rather than individually. In this

paper, I utilize this regularization method to nullify all the k-splines associated with each feature if

needed. Specifically, groups are formed by the k coefficients (βk) of each basis function in each pre-

dictor. And formally, the smoothing operator in the back fitting algorithm is now defined as such:

minβ

(∥∥∥y − θ0 −
∑P

j=1 p (Xj)
′
θj

∥∥∥2
2
+ λ

∑P
j=1

√
N j ∥βj∥

)
, With βj = (β1, ..., βK) and N j the number

of elements the coefficients of the basis function of the K spline associated to each predictor. 80

78It is common to choose cubic spline (As far as I know) as they are able to represent complex curvatures smoothly.
Second order splines, are able to represent non linear functions too, however, they can be less efficient in representing
complex curvatures (e.g. sharp wiggly behaviours) , they are nonetheless used in this paper for computational purposes.
In fact, since I perform GAM on 920 features; cubic splines gives me 3680k parameters per smoothing function while
the second order result in 2760k .

79Note on terminology: Even though ridge regression is commonly referred to as the ”l2” normed regularization; Ridge
is effectively a ”Squared l2” normed regularization. The squared L2 ridge penalty does not result in sparse regularization
whereas the l2, used in Group Lasso does induce sparsity.

80Notice that; like for the ridge and lasso regularization methods, the intercept is not penalized. In addition, stan-
dardization too is required in Grouped Lasso; for the same reasons discussed in the l1 and l2 regularization chapters

43

9 Regression Trees

9.1 Regression Trees

Regression trees are essentially recursive binary partitions on some feature space X resulting in a

piece-wise prediction. That is, Trees are equivalent to recursively partitioning the feature space into

two parts each time until obtaining different partitions, each corresponding to a constant prediction 81

.In a 2 dimensional feature space this equivalence between building a tree and partitioning a feature

space can be clearly illustrated.

((a)) Regression Tree. ((b)) Partitioned Feature Space. ((c)) Constant Piecewise Regres-
sion.

Figure 12: Regression Trees can be interpreted in three ways: as trees, as a feature space partitioning,
or as a constant piecewise regression function. I use my dataset to provide a visual representation
using the Earnings to Price Ratio as the factor.

In fact, one can either, perform a recursive binary partitioning on some rectangular (Two dimen-

sional) feature space: That is, I start with the first split , let’s say in X1 = s1 , then in each of the two

defined regions, I split again. Thus in X1 > s1 I split at X1 = s2 and in X1 < s1 I split at X1 = s3

and I repeat the process recursively, until obtaining the desired partition. The resulting feature space

is split in K regions, each corresponding to a constant prediction output. 82 Or equivalently, one can

represent the same result in a tree: the leafs (i.e. the terminal nodes) represent the last partitioned

regions in the feature space, the binary nodes represent the different binary splitting decisions, and

the output of each leaf corresponds to the constant prediction output of each partitioned region.

Formally, we represent regression trees as such: For some design matrix X and a dependent vari-

able Y ; if we have K ;R1, ..., RK ; partitioned regions with each a corresponding piece wise constant

prediction cK , one can define a regression tree model as such : f(x) =
∑k

k=1 ckI (x ∈ Rk) . The model

is thus characterized by two defining parameters: the partitioned regions and the associated constant

prediction output.

Ideally, one would like to find the partitioning that minimizes the squared loss between the observed

81A recursive program is one in which a function, such as Binary Partition, relies on prior, simplified instances of itself.
82Notice, however that I still have not discussed the choice of the splitting parameters and the splitting point (I explain

this below).

44

and the predicted outputs. Two facts emerge, first , knowing the partitioned regions Rk, our model

prediction is the average of the dependent variables in the partition. That is, Agminck(yi − f(xi))
2

⇒ ĉk = ave (yi | xi ∈ Rk)
83. Secondly, it is computationally unrealistic to find such a partition,

as it involves evaluating the loss for all possible partitions,i.e. comparing resulting trees from every

conceivable split and ordering.

Accordingly, I perform a greedy algorithm (Introduced by Breiman,1984 [2]) to solve this problem.

Instead of considering all possible splits, the greedy algorithm, focuses only on a single partition:

Explicitly, our problem reduces to finding the best partitioning feature Xj and point s that splits the

region into two sub regions R1(j, s) = {X | Xj ≤ s} and R2(j, s) = {X | Xj > s} - Using a squared

loss function, we determine the parameters as such :

ArgminXj ,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2
+min

c2

∑
xi∈R2(j,s)

(yi − c2)
2


Accordingly, ĉ1 = ave (yi | xi ∈ R1(j, s)) and ĉ2 = ave (yi | xi ∈ R2(j, s)).

Constraining the problem to a single split each time makes partition now feasible by computing the

squared loss - also called the impurity function 84 - over all features for all split points 85, within a single

level of the tree only. This algorithm facilitates the construction of a regression tree86; nevertheless, it

exhibits certain limitations: By constraining parameter fitting to a single level only, we risk overlooking

scenarios where a sub optimal splitting feature (or splitting point) at a particular location on the tree

could, in fact, contribute to the creation of a more efficient tree overall. The use of a greedy algorithm

neglects the possibility that a partition considered weak at a certain level might be advantageous for

the entire tree. This issue is mitigated by the introduction of ensemble methods explained in the next

section .

In the greedy algorithm, the tree size serves as a hyper parameter. Setting it too high may result

in overfitting, while setting it too low can lead to underfitting. 87. Consequently, it becomes essential

83In fact, assuming that the partition Rk is known; if x ∈ Rk → I (x ∈ Rk) = 1 → f(x) = cK · 1 Accordingly, in
order to find the constant parameter in Rk one need to minimize the mean squared error of the observation and the

constant prediction in the assumed partition region. Argmin
cK

E
[
(YK − cK)2

]
= Argmin

ck

[E (YK − ck)]
2 + V (YK − ck)

= Argmin
cK

[E(YK)− cK]2 + V (cK), we solve this optimization problem by equating the derivative with respect to ck to

zero (Since the objective function is a quadratic derivable convex function); thus,
∂MSE(cK)

∂cK
= −2 (E(YK)− cK) = 0

solving this equation, we get cK = E(YK) . Hence, the optimal output for a squared loss objective function given the
partition space is the average of the dependent variables in that partition.

84The impurity function is a generic function that quantifies the ”purity” of the split. In regression trees, loss functions
are used for this purpose, while in classification trees it takes different forms, notably Misclassification error , cross entropy
or Gini index etc...

85There are different ways to choose which splitting points we should use when evaluating different splitting scenarios.
I choose s values to be the different quantile values of the feature

86For N observations, Greedy Algorithm is O(N2) while the ”Naive” infeasible partitioning is O(2N). Hence, for 100
observations , we need 10,000 operations in a Greedy Algorithm against 1.267×1030 for the naive splitting to decide on
Xj and s

87This is due to the fact that the tree size controls complexity, impacting generalization, approximation, and estimation

45

to regularize the tree size. Various methods exist to achieve this goal. One approach involves defining

a maximum number of observations in the leaves, or establishing a threshold beyond which the mean

squared error at each iteration should not increase. However, I choose not to employ these methods

due to their myopic behavior regarding the subsequent levels of the tree. Instead, I utilize a Tree

pruning approach.

That is, I construct a large tree using the greedy algorithm, prune the tree at some nodes and

obtain a more performing sub tree. Pruning is the act of cutting down the regression tree at a certain

node. There are different ways of approaching this method; one can, for example, perform a ”Reduced

Error Pruning”, which consists of assessing all nodes, and calculate the cost associated with collapsing

each node then proceed to collapse the nodes that result in the smallest increase in mean squared

error. Note: Pruning will always increase the overall mean squared error of the tree as the tree is a

non parametric method and will surely overfit the data if grown large enough (The dynamics of non

parametric models are discussed in the Generalized Additive Models chapter), this is why, we choose

to prune for the smallest increase in the overall mean. The Reduced Error Method is a fast but naive

method as there is no explicit penalty criterion for pruning other than overall mean squared error.

I thus adopt a more interpretable method: The ”Cost-complexity pruning” method introduced by

Breiman et al. (1984)[2], is a tree regularization method that first consists of building a large tree;

by fixing very loose stopping criteria (For instance, choosing a a maximum number of observations

per leaf to be 1, or choosing a large depth condition... The list of methods for building a large tree is

exhaustive), then finding the subtree that has the minimum mean squared error given a penalty on its

number of leafs (its terminal nodes).

Formally, I pick a subtree T ⊂ T0; that minimizes the following Cost function

Cα(T) =

|T |∑
k=1

Lk(T) + α|T |

with Lk(T) = 1
Nk

(yi − ĉk)
2
the mean squared error associated to the subtree; Ĉk = 1

Nk

∑
xi∈Rk

yi,

the constant prediction in Partition k; |T | the total number of leafs of the tree and α the penalization

tuning parameter. Cost complexity pruning involves penalizing the number of terminal nodes, and

finding accordingly the best subtree. The rationale is as follows: As explained, since growing a tree

invariably results in a decrease in the overall mean squared error (as trees ultimately overfit), we

aim to select a subtree that mitigates overfitting. To achieve this, a comparison of various subtrees

is necessary. Considering that a smaller tree inherently yields a higher mean squared error, the |T |

penalty introduces a size-related penalization to the mean squared error of each subtree. Introducing

errors. These dynamics have been discussed in the Statistical Leaning Theory chapter

46

this penalty term provides a dynamic method for comparing subtrees, where the cost of a smaller tree

may be lower than that of a larger one, depending on the tree’s size (or equivalently, its number of

terminal nodes) and the penalty tuning. This method relies on cross validation: The penalization

hyperparameter α is found by picking the most performing one on the validation set.

47

9.2 Ensemble methods

Ensemble methods are a collection of methods that consists of combining ”weak” learning methods

into a larger more efficient one. Their primary purpose is to reduce model variance by combining

individual models, rendering them particularly interesting in the context of regression trees.

9.2.1 Random Forest

Random Forest (RF) is an ensemble method applied on regression trees. Before delving into random

forests, it’s essential to grasp another widely used ensemble method upon which RFs are based: notably

”bagging” - also called ”Bootstrap Aggregation”. This method consists of building different models

and averaging them to obtain a more robust model. The different models are built by sampling, M

times with replacement from the dataset, resulting in M datasets upon which M models are built.

By training the model on different datasets, bootstrap aggregation is widely assumed to effectively

diminish the model’s variance. It is thus a suitable method for high-variance and low-bias models

such as trees, and it typically performs bad for high-bias models, like for example linear models.

In fact, as explained in the Generalized additive model chapter , linear models exhibit high bias

asymptotically ; MSElinear = σ︸︷︷︸
intrinsic error

+ alinear︸ ︷︷ ︸
approximateerror

+ O
(
n−1

)︸ ︷︷ ︸
estimationerror

; while non parametric

methods are unbiased asymptotically, MSEnonpara = σ2︸︷︷︸
intrinsicerror

+ O
(
n−4/(p+4)

)
︸ ︷︷ ︸

rateofconvergenceofestimationerror

,

making them ideal for bagging. In addition, another important and more obvious aspect of bagging

is that it mitigates the effect of outliers in the data (Grandvalet , 2002[7]). By bootstrapping with

replacement from the dataset, outliers are weighted less in the final estimation (Asymptotically).

Finally, from a Bayesian point of view, Tibshirani et al. (1997[28]) interpret bootstrap aggregation

by describing the distribution resulting from bagging as an ”approximate non-informative Bayesian

posterior”. This result holds asymptotically. In other words, this means that P (θ|X = data) is

approximately obtained by iteratively bootstrapping P (X = data|θ), without the need of any prior

information.

Random Forest, is an ensemble method applied on regression trees that relies on bootstrap aggre-

gation and a variant of the greedy algorithm. Specifically, M bagged trees are constructed through

iterative sampling (with replacement) of subsets from the original data points. At each iteration, a

tree is constructed 88 using a greedy algorithm, wherein, at each split, only a subset of features is

considered.

Hence, for P total features in the dataset, Random forest method consists of picking randomly

D < P features at each split. This feature selection method is motivated by the consideration that

88on the bootstrapped subset of data points

48

bootstrap aggregation alone may not be sufficient: In fact, from a probabilistic point of view, bagging

results in M independent and identically distributed models with each a variance σ2 and a mean µ,

the average of these models has a variance

Var

(
1

M

n∑
i=1

xi

)
= ρσ2 +

1− ρ

M
v2 (4)

(Refer to footnotes for a detailed explanation 89). This result is a crucial theoretic element in

Random Forest’s defence:

The result suggests that by increasing the number of bagged trees M one can reduce the variance

of the bagged model; however, there will always remain some variance due to the correlation between

the bagged trees ρ ;i.e. the model will always exhibit variance asymptotically due ρ.

Random Forest addresses this by randomly selecting a subset of features at each split, aiming to

reduce the correlation between the different bagged trees. Asymptotically, using RF results in a zero

variance model. However, in practice , the second term in 4 does not cancel out, and hence reducing the

correlation would also have some upward effect on the total variance through the second term. Thus,

instead of looking for the set of bagged trees with zero (or negative) correlation, the focus should be on

finding the optimal balance of correlation that minimizes the total variance of the model. Achieving

this balance involves tuning the model’s feature selection parameters. And in fact, the number of

selected factors is a hyperparameter of random forest method determined through Cross-Validation.

9.2.2 Boosted Trees

I also use boosted trees in this paper. Boosting, is also an ensemble method, where, like for bagging,

different weak learners are combined to form a unique model that performs better. Adaptive boosting

was first introduced by Freund and Schapire (1997)[4]; Their algorithm aimed to construct a robust

model by adaptively combining weak learners. While delving into the intricacies of the algorithm is

beyond the paper’s scope, grasping its rationale proves beneficial. AdaBoost.M1 iterates M times 90 ;

at each iteration, training points are reweighted, and a new model is fitted on the reweighed sample.

The new model is scaled, then added to the one fitted in the previous iteration. The algorithm’s output

is thus the scaled sum of these models. Observations are reweighed based on the associated errors;

89That is because Var
(

1
M

∑M
i=1 xi

)
= 1

M2 Var
(∑M

i=1 xi

)
= 1

M2

[
E
[(∑M

i=1 xi

)2
]
− E

[∑M
i=1 xi

]2]
; with

E
[∑M

i=1 xi

]
=

∑M
i=1 E (xi) = Mµ ; and E

((∑M
i=1 xi

)2
)

=
∑M

i,j=1 E (xixj) = ME
(
x2
i

)
+
(
M2 −M

)
E (xixj); This can

be further reduced by noting that the correlation coefficient of two random variables xi and xj ,ρij =
E((xi−µi)(xj−µj))

σiσj
;

is defined as ρij =
E((xi−µ)(xj−µ))

σ2 for bagged (and hence i.i.d) models xi and xj . This correlation formula implies that

E [xixj] = ρσ2 + µ2. Utilizing this formula, ME
(
x2
i

)
+

(
M2 −M

)
E (xixj) reduces to Mσ2 +M2ρσ2 +M2µ2 −Mρσ2.

Accordingly, Var
(

1
M

∑M
i=1 xi

)
= ρσ2 + 1−ρ

M
σ2 .

90M is a tuning parameter of the algorithm

49

misclassified observations receive higher weights (They are thus more relevant in the subsequent fit)

and model scaling is determined by the training error of the new model on the reweighed training set;

higher errors result in lower weights.

In summary, Adaboost.m1 is a greedy adaptive algorithm to construct additive models using simple

basis functions, taking into account previous errors at each iteration. This is equivalent to building

an additive model f(x) =
∑M

m=1 bm(x), defined as the expansion of some basis function bm(x); using

a forward stage-wise additive algorithm with an exponential loss function. 91. In essence, boosting

methods are all forward stage-wise algorithms as such.

Accordingly, boosted trees are the additive expansion of simple trees (which can be interpreted

as basis functions) fM (x) =
∑M

m=1 T (x; Θm), with Θm representing the tree parameters (R and c)

where Θ̂m = argminΘm

∑N
i=1 L (yi, fm−1 (xi) + T (xi; Θm)) is iteratively evaluated by forward stage

wise algorithm. Using a Squared loss function, the problem reduces to a simple regression tree fitting

problem applied on the residual from fitting the previous model rather than the dependent variable

92. In this paper, I apply a ”penalized” version of the boosted model, by scaling each of the added

models by a shrinking penalty. The logic remains the same, I simply multiply every added model (at

each iteration) by a scalar v ∈ (0, 1). Tibshirani et al. (2001) suggest that by adding the v term, one

could, by analogy with the functional gradient descent method, view the shrinkage parameter as the

learning rate (step size) of the gradient descent.

Why Trees I use trees (and related ensemble methods) in this paper for many reasons. First,

Generalized additive models, even though, as explained previously, are a good compromise with respect

to other non linear models; they may be far fetched in the context of return forecasting as they are

global models whose predictive function is the same across all its domain - which suggests that the

underlying function is defined as a single function. Furthermore, GAMs pose an additional challenge.

Despite their enhanced interpretability due to their additive composition, they abstract the dynamics

of the function. Understanding the dynamics from a generalized additive model is nearly impossible

93.

On the contrary, trees offer a distinct advantage. By recursively partitioning the space into different

regions, the tree defines different predictive dynamics (functions) across different paths that are easily

understandable. Moreover, it is noteworthy that the search for similarities in trees represents a more

robust approach compared to the K-Nearest Neighbors method. While K-Nearest Neighbors focuses

on interpolating and smoothing based solely on the similarity of features, neglecting the dependent

91The forward stage wise algorithm consists of first initializing f0(x) ← 0 and then For m = 1, . . . ,M finding the

best model fm ← argminθ
∑

i L
(
fm−1(x) + bm(x, θ̂), yi

)
for some loss function L(.) and updating by adding to the

previous model fm(x)← fm−1(x) + fm(x)
92In fact Θ̂m = Argmin(y − fm−1(x)− Tm(x))2 = Argmin(resid− Tm(x))2
93And it is worse for Non-parametric smoothing methods where there is no clear distinction of the dynamics between

the different features

50

variable; trees take into account the similarity in both dependent and independent variables. Terminal

nodes in trees can be regarded as neighborhoods in the feature space containing datapoints with similar

responses; consequently, Shalizi (2021) characterizes trees as ”adaptive nearest-neighbor methods.” In

addition, there are many practical reasons that make tree popular forecasting methods: for example,

it is straightforward to see which variables are relevant, it helps making predictions when variables are

missing (If one wants to predict but does not have all features used in the tree, he can simply skip the

missing information , without loss of generality) , it does not assume true smooth underlying function

as the piece wise constant prediction can approximately represent both smooth (approximately), and

non smooth true underlying functions , and finally there is no need for calculations to make predictions,

one can just look at the tree.

51

10 Predictive Evaluation Metrics

I focus in this paper on practical out of sample metrics to test for the predictive efficiency of the

models. I use the R squared and the mean squared error estimation. In this section, I present the

metrics used. First, the R-squared - also called the ”coefficient of determination” is a goodness of

fit metric that measures the proportion of variance kept by the predictors 94. Concretely, for any

smoothing method, the R-squared metric is nothing more than the fraction of variance that is not

smoothed out. McFadden (1974)[16] defines the metric in its most general form: R2 = 1− Dres

Dtot
=

Dreg

Dtot

with Dres = ||l̂s− l̂p|| the residual deviance, Dreg = ||l̂p− l̂0|| the model deviance and Dtot = ||l̂s− l̂0||

the total deviance and ℓ̂s, the maximum log likelihood of a saturated model95, l̂0, the maximum log

likelihood under a Null model (Intercept only), and l̂p, the maximum log likelihood under the model

(with p-parameters) 96. In essence, R-squared evaluates model performance relative to a simple null

model (such as the average of dependent variables) or a saturated model. The metric approaches 1

when the model deviance closely aligns with the total deviance and tends towards zero as the explained

deviance deviates further from the total deviance. McFadden’s general framework is important because

it incorporates the multitude of definitions for R2. In the context of linear models alone, there are at

least 5 formulations of R-squared(to the best of my knowledge); these definitions are model dependent,

and are not generalizable to out of sample metrics 97 . In this paper I use the out of sample R2 which

can be thus understood as an out of sample application of McFadden’s metric i.e a comparison of the

out of sample performance of the model with respect to a some naive benchmark; and is typically

defined as the R2
OOS = MSEOOS

MSEbemchmark
with the benchmark being the training data. Contrary to the

in-sample metric, the deviance in R2
OOS is a reliable proxy for predictive error. And unlike in the

in-sample metric, where the residual deviance was consistently smaller than the total deviance due to

smoothing, this relationship no longer holds for OOS R-squared98 .Consequently, OOS R-squared’s

94I purposely chose the word ”kept” and not ”explained” to define R2 as it common to read that R2 is the amount of
variance a regression ”explains”. This definition is misleading.

95A saturated model is one where each observation is parametrized
96For example, assuming the following probabilistic modeling: Y | X ∼ N (xβp, σp) i.e. a Gauss Markov Linear model;

we can compute the associated log likelihood l̂p ; then using l̂0 the log likelihood of Y | X ∼ N
(
βintercept, σo

)
and ℓ̂s.

the log likelihood of Y | X ∼ N (yi, σs) , We get Dres = 1
σ2 SSres. Dreg = 1

σ2 SSreg DTot = 1
σ2 SStot ; this is the

ubiquitous formula of R-squared in a linear setting.
97For some linear model; we get at least 5 formulations of the coefficient of determination. The R2 coefficient can be

expressed as the fraction between the sample variance of regressed observations and the sample variance of the dependent

variables R2 ≡ s2m̂
s2
Y

, and since cY,m̂ = cm̂+e,m̂ = s2m̂ + ce,m̂ = s2m̂ The metric can also be equivalently represented by

the ratio of the covariance of the dependent variable to the regressed observations, divided by the sample variance of

the observations , R2 =
cY,m̂

s2
Y

. Moreover, s2m̂ = s2
β̂0+β̂1X

= s2
β̂1X

= β̂2
1s

2
X , one can write the coefficient as R2 = β̂2

1
s2X
s2
Y

.

In addition, for some demeaned variable x and y, the regression coefficient is expressed as cXY
sX

we can hence write,

R2 =
(

cXY
sXsY

)2
; lastly, decomposing the observed value Y = Ŷ + ϵ we get the following expression R2 =

s2Y −σ̂2

s2
Y

98The residual deviance Dres in sample will always be smaller than the total deviance Dtot, because the smoothing
model smoothes the observations, hence, R2 = 1− Dres

Dtot
, will range between 0 and 1; this is no longer the case out-of-

sample, where the Dres, which is dependent on new unseen data is independent on the smoothing and thus is no longer
bounded by Dtot

52

values span from −∞ to 1.

I report the R2
OOS in this paper, but will not rely on it for model evaluation. Primarily because this

ratio is dependent on the variance of the model’s features. In fact, considering for example a linear

model µ̂(x) = β̂X for which we know the true underlying linear relationship µ(x) = βX (Note: this

is different from the true relationship - which might exhibit non linear properties), its R2 = V ar(µ̂(x))
V ar(Y)

is reduced to β2V ar(X)
β2V ar(X)+σϵ

by simple algebraic manipulation, it is clear from this formula that, even

after having found the true linear regression one can modify the R2 simply by changing the variance:

Thus, even for a perfect model specification, the R2 might exhibit low values for low variance in X. 99

I use instead a more intuitive and practical metric for predictive evaluation , the MSEOOS. For

every model used in this paper, I evaluate the mean squared error (After having tuned the hyper

parameters) on some testing set. I report both the R2 and the MSE metrics, but the ultimate model

selection criterion is the out of sample mean squared error .

99Note: This critique holds for in and out of sample R-squared metrics.

53

11 Resampling Methods

What makes machine learning methods interesting is that they employ practical resampling methods to

assess the robustness of models. This data-driven method is in contrast with classical Factor modeling

which tends to rely more on goodness of fit measures (R squared, Adjusted R squared etc...) or

statistical tests (t test , p values etc..) 100 . There are many different ways to resample the data:

Ultimately, any method boils down to the determining at least a training set for fitting, and validation

test for testing or tuning. A naive random resampling into two groups(training and testing sets) will do

the job - but will not be efficient 101 as it is a highly variable method. On the flip side, the popular leave

one out cross validation (LOOCV) sampling method erases this variance problem 102 , it is less bias

than a naive simple split on the data, however, this method can be computationally expensive. Using

this paper’s dataset, for instance, one would need to fit the data approximately at least a thousand

times under LOOCV . A middle ground solution is hence required; k fold cross-validation, for example,

is a widely used method that serves as a good compromise between high variance and computational

cost 103 . Given this trade-off logic between these different methods, and because resampling methods

are ultimately dependent on the data set (its size and properties) ; one should use, a resampling method

that is tailored for high dimensional Factor modeling using panel data. In fact, given the methodology

chosen, Recursive Time-Ordered Cross Validation (TOCV) with a rolling training window emerges

as the best compromise among all Resampling methods. Resampling is constructed as such: First ,

the data set is split in three categories of samples. The first set is the training set in which I fit my

model. The second set is the validation set:In this sample, the evaluated model performance is used

for hyper parameter tuning.And since this set is not an out of sample set as it is used for tuning;

I introduce a third set : the testing set. This set is used for model’s evaluation after training and

tuning. I already explained how why a naive split CV or a LOOCV may not be efficient; and how

a good compromise would be using K fold cross validation. However, given that the data contains

time series measurements, a K-fold Cross validation is not adequate for at least two reasons: On the

one hand, the K fold Cross validation exposes us to information leakage: By shuffling measurements

across different times, one will end up with a predictive model that uses future information to forecast

anterior phenomena . For example factors in 2016 will forecast 1990s returns - and we do not want this.

On the second hand, the data might also hide underlying regime shifts: Shuffling measurements across

time distorts the predictive logic contained in the model. Recursive Time-Ordered Cross validation

100Those are metrics that are dependent on statistical assumptions and hypotheses. I have already explained the
shortcoming for using R squared here, the same logic applies to many statistical tests and GOF measures.
101this claim is relative - but applies in general - as it fails if the dataset is so small that testing is counterproductive
102LOOCV consists of iteratively fitting on all-but-one observations and testing on the left out observation and averaging
the result over all iterations
103K- fold CV splits the data into K parts of approximately equal size and iteratively fits on k-1 sets and tests on the
left out set. LOOCV is thus especially case of K-Fold CV for K = Number of observations

54

emerges as a tailored compromise for forecasting Returns using panel data.

Figure 13: Graphical representation of the Time ordered Cross-Validation with rolling window resam-
pling method

Accordingly, the TOCV splits the data into a training, validation and testing sets and a training

window rolling forward in time. Ideally, the training window must be rolling and not expanding because

it limits complications due to varying the size of the training set and it mitigates non-stationarity across

time. In summary, the TOCV Resampling method is designed for my problem: This method is both

computationally efficient (low computational cost) and non-varying, ensuring stability and preventing

information leakage. However, due to computational constraints, I use in this paper a regular K-fold

Cross validation resampling.104

104The time ordered Cross Validation with a rolling window ultimately performs better, for the reasons explained above,
however, the size of the dataset used given the available computational power, makes it suboptimal from a practical
point of view. In fact, the dataset I use consists of 87,5 Million data points (96,000 observations by 912 features).

55

12 Empirical Analysis

To construct high-dimensional factor models employing the specified machine learning methods, an

extensive financial dataset sourced from diverse channels is utilized. My dataset is comprised of

monthly holding period returns of firms from years 2001 to 2022 and a list of firms characteristics as

well as a set of macroeconomic indicators. The returns data is sourced from CRSP database; firms

characteristic data is made public by D. Xiu [9], and macroeconomic indicators published by Welsh

and Goyal (2008) [31]. The characteristics dataset encompasses 94 distinct firm attributes, regularly

updated on a monthly, quarterly, or annual basis. These selected features are thoroughly documented

and represent recurrent factors widely employed in asset pricing academia (refer to the factors section in

appendix for a detailed explanation). Additionally, the dataset incorporates 73 dummy variables, each

referencing the industry sector of the corresponding stock, constructed using the standard industrial

code. A comprehensive explanation of processing and cleaning procedures is provided in the code

section in appendix, where I detail the merging of all three datasets and the construction of interactions.

After prepossessing the dataset, I end up with nearly a million observations, I choose however to work

with a smaller subset of observations for computational purposes; I pick the biggest 1,000 firms every

month, for 240 periods, from 2001 to 2020. The total number of different firms in the panel are 3,362

(as firms’ size change with time). The dependent variables of my models are monthly returns and

the independent variables are a set of 94 robust firm characteristics (Details in appendix), eight

fundamental macro economic features as well as their interaction. I end up with a panel regression,

with 912 features for 240,000 observations across time and stocks. In order to use Cross validation, I

divide my dataset into a training , a validation and a testing set. As explained before, the training

set is used for fitting, the validation set, for parameter tuning and the testing set for evaluating the

model’s performance.

56

((a)) Cross sectional mean return against the
treasury bill rate; across 240 time periods

((b)) Volatility of the panel data evaluated by
mean absolute deviation across a 1-year rolling

window

Figure 14: Empirical characteristics of the dependent variable ri,(t+1)

((a)) Empirical Distribution of the dataset and its
quantiles

((b)) Industries represented in the dataset

Figure 15: General Overview of the Dataset

In this empirical analysis, I primarily rely on two metrics to determine the predictive accuracy of the

tested models: The out of sample R-squared and out-of-sample Mean Squared Error. The benchmarks

models I use are factor models documented by Lewellen (2015) (See Methodology chapter for more

details on the factors). Specifically, those are three different Ordinary Least Squares Linear Models

estimated on 3, 7 and 15 ”robust” firm characteristic factors. The empirical results I get from these

models using my dataset do not correspond to the two documented results by Gu et al. (2020) 105.

They nonetheless do not perform badly out of sample.

105Gu et al. (2020) document the out of sample performance of Lewellen’s firm characteristics factors. They test the
features on two different response variables: stock returns and S&P 500 returns over time; and report two different
results accordingly.

57

Documented R2
OOS Other documented R2

OOS R2
OOS MSEOOS

3-factor model .16 -.22 .0068 0.0086258
7-factor model .18 -0.24 -0.0147 0.0087155
15-factor model .19 .68 -0.0052 0.0089151

Table 1: Comparison between, found predictive performance metrics vs documented measures

Results are represented in the table above; the R-squared levels that I obtain are all very close

to zero; but they do not match the two other documented metrics. This difference in R-squared is

anticipated due to variations in the datasets employed. However, the out of sample mean squared

error levels I get are reasonably low, indicating an acceptable out of sample performance. In this

empirical analysis, I primarily use these three models’ out of sample performance as benchmarks for

model selection.

I perform a naive OLS regression on the whole panel in order to illustrate the failure of Ordinary

Least Squares methods in high dimensional factor modeling. As expected, the model does not gener-

alize, the resulting out of sample mean squared error is very high 106 and the out of sample R-squared

(Which can take negative values as explained in the evaluation metrics chapter) takes extremely low

values.

Naive OLS In-sample Out-of-Sample
R2 0.1992 -142.7661

MSE 0.009 1.236

Table 2: Naive Ordinary Least Squares on the whole panel

Lasso, Ridge and Elastic Net regressions are then evaluated. Parameter tuning for these methods

are however limited to sets of 10 to 15 values for computational purposes , consequently, my estima-

tions may overlook more optimal results. I use the Accelerated Proximal Gradient Descent method,

employing both, the quadratic and the Huber loss as my objective functions and report the result for

each method.

Lasso MSEOOS R2
OOS

Quadratic Loss 0.00858677 0.99509
Huber Loss 0.00864447 0.36282

Table 3: Lasso Regression

Elastic Net MSEOOS R2
OOS

Quadratic Loss 0.00854828 1.08035
Huber Loss 0.00853352 1.45110

Table 4: Elastic Net Regression

106Refer to the distribution and the Quantile illustrations of the dependent variable to get an idea of the orders of
magnitude. A mean squared error of 1,236 is far beyond the range of returns.

58

Ridge MSEOOS R2
OOS

Quadratic Loss 0.012 -48.36
Huber Loss 0.00876974 -5.62371

Table 5: Ridge Regression

Empirical results, are as anticipated: The three Lp regularization methods perform much better

than the Naive OLS. The out-of-sample metrics are drastically improved by the introduction of regu-

larization. In addition, since the Elastic Net Regularization contains both the L1 and L2 methods, it

is theoretically expected to outperform, or at least match the performance of Ridge and Lasso Regu-

larization. This fact is verified empirically: Elastic Net has the smallest out of sample mean squared

error followed by Lasso then Ridge. Moreover, Huber Loss outperforms the squared error function for

both Ridge and Elastic Net Regressions. For lasso, even though the quadratic loss performs better, the

restricted range of hyperparameters used (Notably the limited set of threshold parameters for Huber

loss) prevents us from definitively asserting that Huber is sub optimal.

Principal Component Regression is then evaluated both using Huber loss and the quadratic loss as

objective functions. Tuning parameters, specifically the number of principal components and Huber

threshold parameters, are restricted to predefined sets of 15 values.

MSEOOS R2
OOS

Huber Loss 0.00859008 0.67
Quadratic Loss 0.00846502 0.24441

Table 6: Principal Component Regression

First of all, Principal Component Regression greatly outperforms the naive Ordinary Least Squares:

This is evident, as principal component regression, being a regularization method, inherently outper-

forms standard OLS in high-dimensional settings. In addition, Empirical findings are slightly more

satisfying than Lp normed penalizations. These congruent results are not surprising as Principal Com-

ponent Analysis is also a regularization method. The results also suggest that the dimension reduction

to uncorrelated dimensions (i.e. PCs) is reasonable, indicating the substantial strength of second-order

dependence between factors.

The Independent Component Analysis is subsequently tested on the dataset. I perform ICA, choose

Independent Components using the power data method (The number of independent components is

a tuning parameter of the model), then I regress linearly the projected observations on the chosen

independent components using both Huber and quadratic loss functions. Regressing using independent

components results in a performance comparable to lp normed regularizations, and is lower but not far

from Principal Component Regression’s performance. Importantly, what this result imply is that new

logics of dimension reduction other than the traditional uncorrelated Factors methods (PCA, PPCA,

59

MSEOOS R2
OOS

Huber Loss 0.00860797 0.85049
Quadratic Loss 0.00865182 0.34541

Table 7: Independent Components based Regression

MSEOOS R2
OOS

Quadratic Loss 0.00868181 0.00000

Table 8: Generalized Additive Model

FA methods for dimension reduction) are also viable in the context of factor modeling. In addition,

the model is computationally intensive, and its tuning is limited to few hyperparameters. One can

hence expect better results given more computational power. 107

Generalized Additive Models are also evaluated using both Huber and quadratic loss functions. I

use second order splines as the smooth functions and apply Group Lasso Penalty on the GAM.

Empirical results on GAM with Group Lasso suggest that, while not significantly outperforming

other models, GAM shows slight improvement compared to benchmark low-dimensional models. Its

out-of-sample performance is slightly inferior to Lasso and ICA, yet superior to ridge. It’s worth

noting that empirical findings might not fully capture optimal outcomes due to limited exploration of

hyperparameters. In summary, GAM’s empirical performance highlights its relevance, although results

don’t offer definitive guarantees.

Finally, Regression trees’ performance is assessed. First, Regression trees with cost complexity

pruning are tested.

Regression Tree with Cost Complexity Pruning MSEOOS R2
OOS

0.04377 -143.1835427

Table 9: Standard Regression Tree with Pruning

This model performs the worst among all others and its out of sample performance is far from

benchmark models’ performance. Hence, Regression Trees with Cost Complexity Pruning largely fails

to outperform traditional factor models. I have explained in the Regression Tree Chapter that trees do

overfit asymptotically in-sample. This theoretical guarantee has not even been observed empirically

due to practical computational constraints 108 Nonetheless, Compared to a Naive Ordinary Least

Squares, Trees perform better.

Boosting is then applied on Regression Trees. The set of hyperparameters needed for tuning is the

learning rate, the maximum depth of the sub tree, and the number of estimators (That is, the number

107Another practical limitation of this model is that the unmixing process results in very small values (Given that my
dataset is comprised of numbers between 0 and 1), which is not easily manipulable.
108As the number of features used (912) is large, the tree is sensitive to very small Cost Complexity Penalties. These,
small magnitudes could not be reached computationally due to round off error for small values of penalization. Adding
to this issue the inherent Cost Complexity of trees; Regression trees with pruning is very costly computationally.

60

of submodels).

Boosted Regression Tree MSEOOS R2
OOS

0.01294 1.2535847

Table 10: Gradient Boosted Regression Tree

Even though Boosted Trees do perform better than the Regression Tree with cost complexity

pruning,their out-of-sample performance falls significantly short when compared to other regularization

methods. Furthermore, they do not compete with the benchmark factor models. The main issue with

Gradient Boosted Trees in the context of high dimensional factor modeling is computational: In fact,

Trees are computationally expensive methods, and tuning three parameters makes them practically

infeasible for the large panel data I am working on. In this empirical test, the best model has a

learning rate of 0.01, a maximum depth of 1, and 500 submodels; testing for another depth measure,

for instance, would further require 500 new model estimations. Hence, Because the number of sets of

hyperparameters used is small in my estimation, I cannot be conclusive about the bad performance of

boosting.

Random Forest are finally evaluated. The hyperparameters of this model are the maximum depth

of the subtrees, the maximum number of selected features at each split and the number of estimators.

Random Forest MSEOOS R2
OOS

0.00810284 1.56944

Table 11: Random Forest

Random Forests exhibit the highest out of sample performance among all other models. This

result is not surprising given the nature of the problem and the theoretical guarantees associated with

random forests. In fact, building a high dimensional panel model is highly complex and Random

Forests are ideal to smooth out non linear complex relationships. Here too, the tuning process is far

from being optimal; like for the gradient boosted trees, I expect even better results for more available

computational power.

61

13 Conclusion

In this paper, I review the underlying logic behind factor models derived from the assumptions of

the law of one price and the absence of arbitrage opportunities. Factor models primarily involve

establishing a connection between the stochastic discount factor and empirical data. While there

exists a long standing reliance on economically motivated methods to link the SDF to data (ICAPM

and APT), their weak predictive power has prompted a shift in academia towards a more pragmatic

factor modeling tradition. Within this context, high-dimensional factor modeling and machine learning

techniques come into play.

I explain in details , with rigorous mathematical arguments, why Machine learning methods are

important in the context of High dimensional modeling .

Building upon the Euler equation, I construct high-dimensional models using machine learning

techniques. Machine learning both regularizes the Euler equation and adds non linearity to it. The

empirical analysis involves constructing high-dimensional models using extensive panel data for return

forecasting. The dependent variable is the returns on stocks for various firms across different time

periods, while the factors encompass a comprehensive list of firm characteristics, macro indicators,

and their interactions.

Ridge , Lasso , Elastic Net regressions , Principal Component Analysis, Independent Component

Analysis , Generalized additive Models, Regression Trees with pruning, Random Forests , Boosted

Trees are all explained in details. For each of the following methods, I outline their mathematical

properties, their limitation, and their corresponding estimation method - The accelerated proximal

gradient descent method, a common estimation approach for all linear models, constitutes a separate

chapter and is explained thoroughly .

Empirical performances of High dimensional models using Machine Learning Methods are compared

to standard robust low dimensional factor models. Empirical results are all in accordance with the

initial premise: Machine Learning Methods are necessary for high dimensional Factor modeling. In

fact, all of the methods tested in this paper perform much better than a naive OLS on the high

dimensional dataset. Results are also in accordance with the theoretical properties of each model .

In ascending order, the most performing models are: Random forests, Principal Component re-

gression , Elastic net (and Lasso), Regression using Independent Component Analysis and finally

Generalized additive models. These models all exhibit performance on par with or surpass the bench-

mark low-dimensional models.

This paper uniquely contributes by putting Machine Learning methods into perspective with the

theoretical underpinnings of factor models. It distinguishes itself through a rigorous and comprehensive

presentation of the mathematical foundations underlying each employed method. Furthermore, it

62

conducts a practical out-of-sample empirical analysis and introduces an innovative dimension reduction

technique—Independent Component Analysis (ICA), a seemingly effective dimension reduction method

which is rarely documented in Academic papers109.

Having clarified the objectives and the strength of my paper, it is important to note that this paper

does not propose these High Dimensional Factor Models as practical tools for investing. As explained

in the introduction, predicting returns using my panel model is far fetched from a purely practical

perspective, and is only relevant when compared to other factor models, or to economically motivated

models. That being said, the tools presented in this paper can be undoubtedly beneficial in more

specific contexts i.e. cross-sectional, time series or more constrained panel forecasts.

109As far as I know, there has never been any documented independent Component-based Factor Model based on power
data for IC ordering in Empirical Asset Pricing Academia.

63

14 Technical Appendix

14.1 Multicollinearity Evaluation

Even though linear dependence between a pair of vectors is easily identified by computing their corre-

lation, identifying the linear dependence or near-linear dependence of multiple vectors is not straight-

forward. We use metrics like the variance inflation factor (VIF) and the conditional number to quantify

multicollinearity.

14.1.1 The Variance Inflation Factor

The VIF quantifies multicollinearity in a linear regression by computing the ratio of the variance of

the regression coefficient var
(
β̂i

)
= σ2

(
XTX

)−1

i,i
(Assuming a Gauss Markov model with demeaned

predictors X) over the variation of the regression coefficient assuming the predictors are uncorrelated

var
(
β̂i

)
= σ2

(
ns2Xi

)−1
(See how, considering predictors are uncorrelated, the covariance matrix of

X is now assumed to be the diagonal sample variance of X .We multiply by n, as our goal is to

represent the diagonalized version of XTX The average VIF for all predictors gives us a measure

of multicollinearity; one can see from the mentioned formula that the V IF corresponding to no

multicollinearity is 1 and it is widely assumed - but not proved (Shalizi , O’Brien 2007)- that a

VIF¿10 indicates high multicollinearity .

14.1.2 The Conditional Number

Conditional number is another metric for measuring multicollinearity. Defined as K(A) = ∥A∥ ·
∥∥A−1

∥∥
with ∥A∥ = maxx ̸=0

∥Ax∥
∥x∥ and

∥∥A−1
∥∥ = minx ̸=0

∥Ax∥
∥x∥ . It measures the ratio of the biggest relative

stretching of X by the transformation over its biggest relative shrinking. Intuitively,K(A) can be seen

as the amount of distortion of some unit sphere by A and hence is a good measure of ill-conditionality

(and.(un)stability) of the matrix: A high K(A) indicates a high distortion and vice versa. In addition,

Like for the VIF there are no proven benchmarks above which there is serious Multicollinearity .

14.2 Backfitting Algorithm for GAMs

To understand the logic underlying the back fitting algorithm: I first minimize the squared loss between

the observed values and my Generalized additive model:

minE

Y −
α+

p∑
j=1

fj (Xj)

2

(A1)

And by the theory of projections :

64

fK (XK) = E
[
Y −

(
α+

∑p
j ̸=K fj (Xj)

)
| XK

]
, for all K = 1, ..., p(A2)

That is, if the Generalized Additive model is valid on all predictors, the conditional (on XK)

expected value of the partial residual (the difference between Y and all-expect-the k-th feature) is

equal to the smoothing function applied on the k-th predictor. This is intuitive : In a well defined

additive model, one should expect that the smoothing function at each feature K is fit by fitting the

partial residual (The Y after we have gotten rid of the effects of all the j ̸= k smoothers) on XK .

We can simply represent (A2) in the following matrix form:

I P1 · · · P1

P2 I · · · P2

...
. . .

...

Pp · · · Pp I





f1 (X1)

f2 (X2)

...

fp (Xp)


=



P1Y

P2Y

...

PpY


, where each Pi(·) = E (· | Xi)

Since, we are finding fj()s using smoothing methods 110, We can write:

I S1 · · · S1

S2 I · · · S2

...
. . .

...

Sp · · · Sp I





f1

f2
...

fp


=



S1Y

S2Y

...

SpY


, where Si is a smoothing matrix that estimates

PiY = E(Y |Xi)

Solving with the Gauss–Seidel iterative method this Ax = b problem, we get the Backfitting

Algorithm:

f̂
(ℓ)
j ← Smooth

[{
yi − α̂−

∑
k ̸=j f̂k (xik)

}N

1

]
, at each iteration (l)

14.3 The Variance-Bias Decomposition

Detailed illustration of how Variance-Bias Decomposition is different than the Estimation-

Approximation error:

The following illustration is sourced from ”Bias/Variance is not the same as Approximation/Esti-

mation ” paper (2023)

Ex

[
ℓ
(
y∗, ḟϕ(x)

)]
︸ ︷︷ ︸

bias

= R (f∗)−R (y∗)︸ ︷︷ ︸
approximation error

+R
(
ḟϕ

)
−R (f∗)︸ ︷︷ ︸

estimation bias

Ex

[
ED

[
ℓ
(
f̂ϕ(x), f̂(x)

)]
︸ ︷︷ ︸

variance

= ED

[
R(f̂)−R

(
f̂erm

)]
︸ ︷︷ ︸

optimisation error

+ED

[
R
(
f̂erm

)
−R

(
f̂ϕ

)]
︸ ︷︷ ︸

estimation variance

Bias is not equivalent to approximation error, and variance is not the same as estimation error.

110Note: Smoothing method encompass a myriad of models. Smoothing does not mean spline smoothing. But rather
refers to statistical regression methods that involves interpolation/extrapolation method : Shalizi (2021) defines smooth-
ing to be any model of the form µ̂(x) =

∑n
i=1 yiw (x, xi, b)

65

Figure 16: The estimation - approximation bias is not equivalent to the variance - bias error, even
though they share some common rationale

14.4 Least-Norm solution

Graphical Representation of the Least-Norm Solution in Under determined systems

Figure 17: Enter Caption

14.5 Proximal Operators

Closed forms proximal operators:

Objective functions can be split into smooth and non smooth function. In our optimization prob-

lems; our Non-smooth functions are Ridge, Lasso, Elastic Net and Group Lasso. Their Proximal

operator Closed Form solutions are:

proxγϕ(θ) =



θ
1+λγ , Ridge;

λS(θ, λγ), Lasso;

1
1+λγρS(θ, (1− ρ)λγ), Elastic Net;(
S̃ (θ1, λγ)

⊤
, S̃ (θ2, λγ)

⊤
, . . . , S̃ (θP , λγ)

⊤
)⊤

, Group Lasso.

,

66

where S(x, µ) and S̃(x, µ) are defined by:

(S(x, µ))i =


xi − µ, if xi > 0 and µ < |xi| ;

xi + µ, if xi < 0 and µ < |xi| ; ,

0, if µ ≥ |xi| .

(S̃(x, µ))i =


xi − µ xi

∥xi∥ , if ∥xi∥ > µ

0, if ∥xi∥ ≤ µ.

14.6 Independent Component Analysis Visualized

Typical applications of independent Component Analysis are in signal processing and in computer

vision. Here is a schematic representation of ICA’s rationale - Stone (2004)[25] :

((a)) Independent Component Analysis for
Computer Vision

((b)) Independent Component Analysis for Signal
Processing

Figure 18: Independent Component Analysis Visualized

In my paper, I use independent component analysis on factor models, offering a distinctive approach

with respect to Empirical Asset Pricing Academia as the utilization of ICA in factor models is scarcely

documented in existing literature.

67

14.7 List of Factors

The list of Independent Variables used is extensive. They can be grouped into two different categories:

Macro economic indicators and firm specific features.

This list of firms characteristics is made public by D. Xiu (2020) on his website, resenting an

updated version of Zhang et al. (2017) [8]already documented list of firms characteristics. Those are

a list of 94 Characteristics widely used and tested Factors in Empirical Asset Pricing Academia.

68

Macro economic indicators are made public by Goyal on his website. By manipulating some of the

proposed variables (See Code Processing Section) I reduce the list to eight macro economic factors:

Dividents/Price Ratio
Earnings/Price Ratio
Book/Market Ratio

Net Equity Expansion
Treasury Bill Rate

Term Spread
Default Spread
Stocks Variance

Table 12: List of Macroeconomic Factors

Finally, Dummy Factors represent firms’ corresponding Industry. They are derived from the

Standard Industrial Code (SIC) provided by D. Xiu. The first two digits of the SIC are indicative of

the sector. Below is the list of sectors and their corresponding code.

69

SIC first digits Industry
01-09 Agriculture, Forestry, Fishing
10-14 Mining
15-17 Construction
20-39 Manufacturing
40-49 Transportation and Public Utilities
50-51 Wholesale Trade
52-59 Retail Trade
60-67 Finance, Insurance, Real Estate
70-89 Services
91-99 Public Administration

Table 13: List of Industries Corresponding to the dummy variables

14.8 Code

The empirical findings are implemented in Python. The complete code is presented in a notebook

format, organized into three main sections: Data Processing, Data Analysis, and Statistical Modeling.

I have printed only important outputs and commented secondary but significant code segments.

70

Code:

Dataset: Feature dataset is public on Dacheng Xiu’s website. The file’s name is
'datashare.csv’(file found in directory). This file is a 3.6 GB file and does not open on excel. I use
Pandas library to preprocess the data. The dependent variables (1-month holding period returns)
are extracted from CRSP database. I extract monthly holding period returns from from 12-1925
to 12-2022 , as I could not access any more recent return. (NB : I am using crsp_a_stock package
on WRDS). Macro dataset is public on Amit Goyal’s webiste. File name is 'PredictorData2022.csv’
file is in directory.

I process and clean the data, then provide a summary of the dataset by analysising its empirics. I
finally apply statistical methods on the data.

I comment out sections of code when their output occupies excessive screen space.

Data Analysis
[]: from sklearn.preprocessing import MinMaxScaler

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import pickle
import sys
import time

[]: file_return = '/content/drive/MyDrive/charbel/returns_only.csv'
file_feature = '/content/drive/MyDrive/charbel/datashare.csv'

data_return= pd.read_csv(file_return)
data_feature = pd.read_csv(file_feature)

[]: #print("List of variables \n", data_feature.columns.tolist()) # list of all␣
↪→vars in this file - factors file

#print("\n head \n",data_feature.head()) # first few rows
print("\n Count Null \n" ,data_feature.isnull().sum()) # Shows the number of␣
↪→null values in each column

Count Null
permno 0

DATE 0
mvel1 3070
beta 400564
betasq 400564

...
retvol 3479
std_dolvol 316358
std_turn 305807
zerotrade 309813
sic2 300359

Length: 97, dtype: int64

Those correspond to the (97-DATE-pernmo-sic2) 94 characteristics described in the table in ap-
pendix . Pernmo is each stock’s identifier in CRSP’s database & and sic2 are Standard Industrial
Classification (SIC) codes. RET refers to the Holding Period Return Now for the returns file

[]: print("List of variables \n", data_return.columns.tolist()) # list of all vars␣
↪→in this file - factors file

print("\n Count Null \n" ,data_return.isnull().sum()) # Shows the number of␣
↪→null values in each column

List of variables
['PERMNO', 'date', 'COMNAM', 'PERMCO', 'PRC', 'RET']

Count Null
PERMNO 0

date 0
COMNAM 35001
PERMCO 0
PRC 150689
RET 85298
dtype: int64

I change variable names in order to merge both dataframes later and for clarity.

[]: data_return = data_return.rename(columns={'PERMNO': 'permno'})
data_return = data_return.rename(columns={'date': 'DATE'})

[]: print(len(data_return), len(data_feature))

4927531 4117300

0.0.1 Merging returns and their associated features

[]: merged_data = pd.merge(data_feature, data_return, how='inner', on=['permno',␣
↪→'DATE'])

[]: print("\n Count Null \n" ,merged_data.isnull().sum()) # Shows the number of␣
↪→null values in each column

Count Null
permno 0

DATE 0
mvel1 3070
beta 400564
betasq 400564

...
sic2 300359
COMNAM 0

PERMCO 0
PRC 20481
RET 20468
Length: 101, dtype: int64

I have merged both (inner merge wrt pernmo and date) in the “merged_data” dataframe

Use different dates

[]: #start_date, end_date = 19570101, 20161231
start_date, end_date = 20010101, 20201231

[]: merged_data =␣
↪→merged_data[(merged_data['DATE']>=start_date)&(merged_data['DATE']<=end_date)].
↪→reset_index(drop=True)

merged_data['DATE'] = pd.to_datetime(merged_data['DATE'],format='%Y%m%d')+pd.
↪→offsets.MonthEnd(0) #change time format

[]: #print("List of variables for merged and constrained \n", merged_data.columns.
↪→tolist()) # list of all vars in this file - factors file

#print("\n head \n",merged_data.head()) # first few rows
print("\n Count Null \n" ,merged_data.isnull().sum()) # Shows the number of␣
↪→null values in each column

print("number of observations" , len(merged_data))

Count Null
permno 0

DATE 0
mvel1 255
beta 98296
betasq 98296

...
sic2 22491
COMNAM 0
PERMCO 0
PRC 7810
RET 7799
Length: 101, dtype: int64
number of observations 1487672

I end up with 1,487,672 observations

I define a list of firms’ characteristics as defined in paper. I exclude company name , database IDs
(permno & permnco) , date, returns and industry code (sic) to get the list of characteristics

[]: characteristics = list(set(merged_data.columns).
↪→difference({'DATE','permno','COMNAM','sic2','PERMCO','PRC','RET'}))

[]: print(str(characteristics) + " are the firms' characteristics. \nThere are " +␣
↪→str(len(characteristics)) + " characteristics.")

['stdcf', 'divo', 'pchgm_pchsale', 'chpmia', 'orgcap', 'pchsaleinv', 'maxret',
'beta', 'roavol', 'cfp', 'grcapx', 'cfp_ia', 'tang', 'pchcapx_ia', 'ep',
'invest', 'chinv', 'securedind', 'agr', 'age', 'cashdebt', 'divi', 'lgr',
'pchsale_pchinvt', 'chatoia', 'chcsho', 'egr', 'roic', 'pricedelay', 'aeavol',
'pchquick', 'operprof', 'chtx', 'dolvol', 'rd_mve', 'pchdepr',
'pchsale_pchxsga', 'mom12m', 'mve_ia', 'std_turn', 'herf', 'chempia', 'sp',
'gma', 'grltnoa', 'currat', 'rsup', 'ms', 'absacc', 'bm', 'dy', 'stdacc',
'turn', 'tb', 'secured', 'cinvest', 'cashpr', 'mvel1', 'ill', 'chmom', 'sgr',
'mom6m', 'pchcurrat', 'idiovol', 'convind', 'roeq', 'cash', 'mom1m', 'lev',
'salerec', 'depr', 'sin', 'saleinv', 'ps', 'nincr', 'quick', 'zerotrade',
'pctacc', 'ear', 'hire', 'salecash', 'indmom', 'acc', 'realestate', 'rd_sale',
'pchsale_pchrect', 'rd', 'retvol', 'baspread', 'roaq', 'std_dolvol', 'bm_ia',
'mom36m', 'betasq'] are the firms' characteristics.
There are 94 characteristics.

0.1 MISSING DATA

I drop observations for which I do not have the monthly holding period return and Replace the
missing features with median of characteristic’s value for each stock

[]: merged_data.isnull().sum()

[]: permno 0
DATE 0
mvel1 255
beta 98296
betasq 98296

...
sic2 22491
COMNAM 0
PERMCO 0
PRC 7810
RET 7799
Length: 101, dtype: int64

There are missing returns in the data

[]: #merged_data[merged_data['RET'].isnull()].tail(20)[['permno', 'DATE']] #last 20␣
↪→missing returns

#we see that the N/A observations are not specific to some particular time frame
#merged_data[merged_data['RET'].isnull()].head(20)[['permno', 'DATE']] #First 20␣
↪→missing returns

Drop obsevations for which returns are not available Now : the merged_data has become
“merged_data_updt”,after dropping the missing return

[]: merged_data_updt = merged_data.dropna(subset=['RET']).reset_index(drop=True)

[]: print(merged_data_updt.isnull().sum())

permno 0
DATE 0
mvel1 244
beta 98118
betasq 98118

...
sic2 21717
COMNAM 0
PERMCO 0
PRC 11
RET 0
Length: 101, dtype: int64

More cleaning * In the returns columns (RET) there are also some defective values (characters
instead of numerical values) * I spot them, then update the merged_data_updt dataframe accord-
ingly

[]: non_convertible_indices = merged_data_updt.loc[pd.
↪→to_numeric(merged_data_updt['RET'], errors='coerce').isna()].index

non_convertible_elements = merged_data_updt.loc[pd.
↪→to_numeric(merged_data_updt['RET'], errors='coerce').isna(), 'RET']

print(non_convertible_indices)
print(non_convertible_elements.head(3))

Int64Index([8499, 415015, 639821, 699752, 795249, 926856, 1339620,
1377438, 1383112, 1432729, 1444702, 1454346],

dtype='int64')
8499 B
415015 B
639821 B
Name: RET, dtype: object

[]: print("the number of defective returns", len(non_convertible_indices))

the number of defective returns 12

[]: merged_data_updt = merged_data_updt.drop(index=non_convertible_indices).
↪→reset_index(drop=True)

[]: print("the number of observations", len(merged_data_updt))

the number of observations 1479861

Sort out top and bottom firms. I create two datasets : One for the 10000 biggest firms
and another for the 10000 smallest firms (cross-sectionally) merged_data_top : For each

date, I sort the top 1000 firms (according to their size : mvel1) descendingly. merged_data_bottom
: same but top 1000 smallest firms .

[]: merged_data_top = merged_data_updt.sort_values('mvel1',ascending=False).
↪→groupby('DATE').head(1000).reset_index(drop=True)

merged_data_bottom = merged_data_updt.sort_values('mvel1',ascending=False).
↪→groupby('DATE').tail(1000).reset_index(drop=True)

[]: print(merged_data_top.isnull().sum())
#print(merged_data_bottom.isnull().sum())
#print(len(merged_data_bottom) , len(merged_data_top))
#rint(len(merged_data_bottom.columns))

permno 0
DATE 0
mvel1 0
beta 5453
betasq 5453

...
sic2 1540
COMNAM 0
PERMCO 0
PRC 0
RET 0
Length: 101, dtype: int64

I end up with ~1,5 Mln observations for the whole panel and 240,000 observations for top and bottom
panels (That is because for each of the 240 time frames, I pick the 1000 biggest and smallest firms)

I now want to replace the missing values by the cross sectional median value at each month. For
this, I first group by date then for each characteristic (i), I use the function defined by lambda
x:x.fillna(x.median()). lambda is a generic way to define a function (w/out passing by def()) to
transform each characteristic to an updated one whereby N/A values are filled by the median in a
given date group.

[]: for i in characteristics:
merged_data_updt[i] = merged_data_updt.groupby('DATE')[i].transform(lambda␣

↪→x: x.fillna(x.median()))

[]: columns_with_missing_values = merged_data_updt.columns[merged_data_updt.isnull().
↪→any()]

print(columns_with_missing_values)

Index(['sic2'], dtype='object')

[]: temp_merged_updt_2001 = merged_data_updt # create a temp var for comparison -␣
↪→later in the code (nxt 2 lines)

For the 2001-2020 time windows, this is sufficient, but, it might be the case that all
values of characteristics in a certain group might be null,replacing NA by the median

would be innefective. To be on the safe side, I replace the remaining N/A by 0.

Because the previous step is dependent on the initial time frame, then, it may or may
not be needed. I verify this here:

[]: for i in characteristics:
merged_data_updt[i] = merged_data_updt[i].fillna(0)

[]: # Checking
are_equal = temp_merged_updt_2001.equals(merged_data_updt)
print("Are the DataFrames equal?", are_equal,". if true, we're good to go.␣
↪→nothing has changed (NOTE: This result changes from an initial time window to␣
↪→another)")

Are the DataFrames equal? True . if true, we're good to go. nothing has changed
(NOTE: This result changes from an initial time window to another)

I do the same for bottom and top dataframes Now add to the name of top and bottom dataframes
: #### “_updt”

[]: def fill_missing(data, characteristics):
for i in characteristics:

data[i] = data.groupby('DATE')[i].transform(lambda x: x.fillna(x.
↪→median()))

for i in characteristics:
data[i] = data[i].fillna(0)

return data

[]: merged_data_top_updt = fill_missing(merged_data_top, characteristics)
merged_data_bottom_updt = fill_missing(merged_data_bottom, characteristics)

[]: print("missing data in top:",merged_data_top_updt.columns[merged_data_top_updt.
↪→isnull().any()]) #checking for missing vars

print("missing data in bottom",merged_data_bottom_updt.
↪→columns[merged_data_bottom_updt.isnull().any()])

missing data in top: Index(['sic2'], dtype='object')
missing data in bottom Index(['sic2'], dtype='object')

No relevant missing variable. We are good to go. I check if there are still 1000 stocks per month.

[]: #[(merged_data_top_updt.groupby('DATE')['permno'].nunique() != 1000).any()]
#[(merged_data_bottom_updt.groupby('DATE')['permno'].nunique() != 1000).any()] #␣
↪→yes, we are good to go

Now that I got rid of observations with missing dependent variables ; and solved the
problem of missing value. I create dummy vars for the SIC variable. SIC are the standard
industial classification codes: The 2 first digits defining it represent an industry section. I want to
represent them as dummy variables

I use get_dummies() from pandas library. and define a function that first on gets dummies on for
the sic2 column and fills missing values by 619619 in order to drop them later; Now this function -
in its standard version creates a col for each diff variable and gives it the same name as the variable
- this function also permits adding a prefix (written prefix_), I add sic; then at the end drop the
NA sic

I will also drop irrelevant variables in the process

[]: def create_sic_dummies(df):
sic_dummies = pd.get_dummies(df['sic2'].fillna("619619").

↪→astype(int),prefix='sic').drop('sic_619619',axis=1)
df_dummy = pd.concat([df,sic_dummies],axis=1) # merge
df_dummy.drop(['PERMCO','PRC','sic2'],inplace=True,axis=1) #drop sic2 , we␣

↪→do not need it anymore. And drop irrelevant columns. Keep Permno, Date and␣
↪→Company name

return df_dummy

[]: merged_data_updt_dummy = create_sic_dummies(merged_data_updt)

[]: #print("List of variables W/ DUMMY \n", merged_data_updt_dummy.columns.tolist() ␣
↪→)

#print("\n head \n",merged_data_updt_dummy.head()) # first few rows
#print("\n tail \n",merged_data_updt_dummy.tail()) # last few rows
#print(merged_data_updt_dummy.isnull().any().sum()) #should print false
print("\nthe number of dummy variables" ,len((merged_data_updt_dummy).columns)␣
↪→- len((merged_data_updt).columns) + 3)

#print(len((merged_data_updt_dummy).columns))

the number of dummy variables 73

The merged data is now called: merged_data_updt_dummy Given the chosen time period I have
73 dummies representing the different industry sectors

No more missing values in firms’ characteristics, and observations with n/a returns are dropped

We’re done with merging returns to features and cleaning the merged data

To resume : We are using (Given the 2001-2020 time frame) : 1,479,873 - (defective returns)
observations from the beginning of 2001 to the end of 2020. for 14,614 firms and 94 characteristics
73 sector dummies and the dataframe contains 171 columns (Note: In the cleaning process I got
rid of unuseful cols

I do the same thing with top and bottom dataframes

[]: merged_data_top_updt_dummy = create_sic_dummies(merged_data_top_updt)
merged_data_bottom_updt_dummy = create_sic_dummies(merged_data_bottom_updt)

[]: #[(merged_data_top_updt_dummy.groupby('DATE')['permno'].nunique() != 1000).any()]
#[(merged_data_bottom_updt.groupby('DATE')['permno'].nunique() != 1000).any()]

Note we get for top 1000 :

[]: #print(merged_data_top_updt_dummy.head())
#print(merged_data_bottom_updt_dummy.head())
#print(len((merged_data_top_updt_dummy.columns)))
print("\nthe number of dummy variables for top dataframe is "␣
↪→,len((merged_data_top_updt_dummy).columns) - len((merged_data_top_updt).
↪→columns) + 3)

print("\nthe number of dummy variables for bottom dataframe is "␣
↪→,len((merged_data_bottom_updt_dummy).columns) - len((merged_data_top_updt).
↪→columns) + 3)

#print("\n\n\n\n\n\n\n\n")
#print(merged_data_top_updt_dummy[merged_data_top_updt_dummy['DATE']<(np.
↪→datetime64('2009-01-31'))].tail())

the number of dummy variables for top dataframe is 66

the number of dummy variables for bottom dataframe is 71

0.1.1 Note

I spot an error in the permnos

[]: #print(merged_data_updt_dummy.columns.tolist())
print("number of different company names" , merged_data_updt_dummy['COMNAM'].
↪→nunique() , "Number of different permnos", merged_data_updt_dummy['permno'].
↪→nunique())

number of different company names 17851 Number of different permnos 15614

This suggests that the permnos refer to more than one company name. I solve this issue

[]: # Determining the issue
#print(merged_data_updt_dummy.head())
result_df = merged_data_updt_dummy.groupby('permno')['COMNAM'].
↪→nunique(dropna=True).reset_index(name='unique_names_count')

result_df = result_df[result_df['unique_names_count'] > 1]
print(result_df[['permno', 'unique_names_count']])

permno unique_names_count
0 10001 3
1 10002 2
2 10012 2
7 10028 3
10 10037 2
...
15597 93416 2
15606 93429 2
15608 93431 2

15610 93433 2
15613 93436 2

[3086 rows x 2 columns]

Permnos are bad identifiers as they refer to more than 1 company name sometimes. For example
for 10001 we can see the list of company names

[]: merged_data_updt_dummy.loc[merged_data_updt_dummy['permno'] == 10001 , 'COMNAM'].
↪→unique() #for example here are 3 COMNAM for permno 10001

#merged_data_updt_dummy.loc[merged_data_updt_dummy['permno'] == 10016 ,␣
↪→'COMNAM'].unique() # Just checking, As expected , I got just 1 permno for␣
↪→10016

[]: array(['ENERGY WEST INC', 'ENERGY INC', 'GAS NATURAL INC'], dtype=object)

[]: #checking if there are in the same time period, two permnos .
has_duplicates = merged_data_updt_dummy.groupby('DATE')['permno'].
↪→transform(lambda x: x.duplicated(keep=False))

print(has_duplicates.any()) #False. I am good to go .

False

I want for every company name an id, then delete the permno and replace it by the ids

[]: print(merged_data_updt_dummy['COMNAM'].isnull().sum()) #checking if there are␣
↪→missing column names; should get 0

merged_data_updt_dummy['ID'] = merged_data_updt_dummy.groupby('COMNAM').ngroup()␣
↪→# create id for each new name

0

[]: #uncomment to check
#print(merged_data_updt_dummy.head())
#print(merged_data_updt_dummy[merged_data_updt_dummy['ID'] == 347]['COMNAM'].
↪→head(1)) #CHANGE ID number to see the observations (and corresponding permno)

#print("The number of firms/IDs is", merged_data_updt_dummy["ID"].nunique())

I can now drop the permno. And use the ID. I will then rename the “ID” to “permno”. To keep the
code simple. ##### merged_data_mod

[]: merged_data_mod = merged_data_updt_dummy.drop('permno',axis=1)

Change ‘ID’ to ‘permno’

[]: #print(merged_data_mod.head())
merged_data_mod = merged_data_mod.rename(columns={'ID':'permno'})

[]: #print(merged_data_mod.head(3))

I am good to go . I now have identifiers for each firm . Before proceeding: I also replace permnos
for top and bottom firms. To do this:

• I first re-organize the top panel. Sort them by date; then by size whithin each date : “_org”
• Then, I check if the ID issue is present (should be if data is correct), and solve it.

[]: #print(merged_data_top_updt_dummy.head())
merged_top_org = merged_data_top_updt_dummy.sort_values(by=['DATE', 'mvel1'],␣
↪→ascending=[True, True]).reset_index(drop=True)

merged_bottom_org = merged_data_bottom_updt_dummy.sort_values(by=['DATE',␣
↪→'mvel1'], ascending=[True, True]).reset_index(drop=True)

[]: #print(merged_top_org.head(3))
#print(merged_bottom_org.head())
#check for id problem
print("For the top panel number of different company names" ,␣
↪→merged_top_org['COMNAM'].nunique() , "Number of different permnos",␣
↪→merged_top_org['permno'].nunique())

print("\nNow for the bottom panel number of different company names" ,␣
↪→merged_bottom_org['COMNAM'].nunique() , "Number of different permnos",␣
↪→merged_bottom_org['permno'].nunique())

I have 3,362 firms for the top panel and 6,997 for the bottom pannel. These numbers are coherent.
I am picking from 2001 to 2020 :

• top 1000 firms. Many of them are the same at different periods. And some of them (fewer)
are not repeated.

• and Bottom 1000 firms. Here the number of repeated firms is more volatile as lower size firms
are less stable

However: The issue of ID is present in the “top” and “bottom” panels data . let’s solve it

[]: #checking for top panel (uncomment)

#result_df = merged_top_org.groupby('permno')['COMNAM'].nunique(dropna=True).
↪→reset_index(name='unique_names_count')

#result_df = result_df[result_df['unique_names_count'] > 1]
#print(result_df[['permno', 'unique_names_count']].tail(10))
#data_return.loc[data_return['permno'] == 92602 , 'COMNAM'].iloc[0]
#unique_names = data_return.loc[data_return['permno'] == 93002 , 'COMNAM'].
↪→unique()

#print(unique_names)

end of checking
#adding ID

merged_top_org['ID'] = merged_top_org.groupby('COMNAM').ngroup() # create id for␣
↪→each new name

merged_bottom_org['ID'] = merged_bottom_org.groupby('COMNAM').ngroup()

[]: #verifying if ID are well defined
#print(merged_top_org)
#print(merged_top_org[merged_top_org['ID'] == 3].head(10)) #CHANGE ID number to␣
↪→see the observations (and corresponding permno)

#print("The number of firms/IDs is", merged_top_org["ID"].nunique())
merged_top_mod = merged_top_org.drop('permno',axis=1) #DROP PERMNO
merged_bottom_mod = merged_bottom_org.drop('permno',axis=1) #DROP PERMNO

added “_mod” to top and bottom

[]: merged_top_mod= merged_top_mod.rename(columns={'ID':'permno'})
merged_bottom_mod = merged_bottom_mod.rename(columns={'ID':'permno'})

Lastly, I get rid of the Company name column in each of the three dataframes. The ID (now called
permno) is sufficient

[]: merged_top_mod= merged_top_mod.drop('COMNAM', axis=1)
merged_bottom_mod = merged_bottom_mod.drop('COMNAM',axis =1)
merged_data_mod = merged_data_mod.drop('COMNAM',axis =1)

Now I have well defined dataframes

• merged_top_mod
• merged_bottom_mod
• merged_data_mod

[]: #Remove comment to see them
#print(merged_top_mod.columns.tolist())
#print(merged_bottom_mod)
#print(merged_data_mod)

Adding Macro variables

Those are macroeconomics monthly indicators; Time range beginning 1871 - end 2022.
I find analyze the content then clean it

This data is provided and thus Provided by Goyal. This data was used in Goyal and Welch’s paper
“Performance of Equity Premium Prediction” (2008)

The index variable represent the S&P500 index return , the E12 and the D12 are the 12-month
moving sums of the earnings and dividend of the S&P500 ,I instead use the earnings price ratio (ep)
and dividend price ratio (dp) which are computed as the ratio between the 12month div/earnings
on the S&P and the index return. b/m - which is redefined as bm , is the book to market for
Dow Jones industrial average. The tms is the term spread defined as the diference between the
Long Term Yield (lty) and Treasury Bills (tbl) And the Default Yield Spread (dfy) is the difference
between BAA and AAA-rated corporate bond

Ultimately, I will use these macro metrics only :Dividend-price ratio(dp), earnings-price ratio (ep),
book-to-market ratio (bm), net equity expansion (ntis), Treasury-bill rate (tbl), term spread (tms),
default spread (dfy), and stock variance (svar).

[]: data_macro = pd.read_csv('/content/drive/MyDrive/charbel/PredictorData2022.xlsx␣
↪→- Monthly.csv')

[]: print("OVERVIEW OF THE IMPORTED DATAFRAME. List of variables \n", data_macro.
↪→columns.tolist())

#print("number of observations",len(data_macro))
#print("\n head \n",data_macro.head()) # first few rows
#print("\n tail \n",data_macro.tail()) # last few rows
#print("\n Summary \n",data_macro.info()) # summary
#print("\n col names \n",data_macro.columns) # column names
#print("\n nrow names \n" ,data_macro.index) # index (row labels)
#print("\n data type \n",data_macro.dtypes) # data types of each column
#print("\n Count Null \n" ,data_macro.isnull().sum()) # number of null values␣
↪→in each column

I constraint the dataframe to some time range
[]: data_macro = data_macro[(data_macro['yyyymm']>=start_date//

↪→100)&(data_macro['yyyymm']<=end_date//100)].reset_index(drop=True)

[]: #print("\n head \n",data_macro.head()) # first few rows
print(data_macro.columns[data_macro.isnull().any()].tolist())
#print(len(data_macro.columns))

['csp']

[]: #create a copy of the DataFrame
data_macro_mod = data_macro.copy() # because last line is causing memory issues
data_macro_mod['Index'] = data_macro_mod['Index'].str.replace(',', '').
↪→astype('float64')

data_macro_mod['ep'] = data_macro_mod['E12'] / data_macro_mod['Index']
data_macro_mod['dp'] = data_macro_mod['D12'] / data_macro_mod['Index']
data_macro_mod.rename({'b/m': 'bm'}, axis=1, inplace=True)
data_macro_mod['tms'] = data_macro_mod['lty'] - data_macro_mod['tbl']
data_macro_mod['dfy'] = data_macro_mod['BAA'] - data_macro_mod['AAA']
macro_indicators = ['dp', 'ep', 'bm', 'ntis', 'tbl', 'tms', 'dfy', 'svar']
data_macro_mod = data_macro_mod[['yyyymm'] + macro_indicators] #remove␣
↪→irrelevant vars

data_macro_mod['yyyymm'] = pd.to_datetime(data_macro_mod['yyyymm'],␣
↪→format='%Y%m') + pd.offsets.MonthEnd(0)

[]: #print("List of variables \n", data_macro_mod.columns.tolist())
#print("number of observations",len(data_macro_mod))
#print("\n head \n",data_macro_mod.head()) # first few rows
#print(data_macro_mod.columns[data_macro_mod.isnull().any()].tolist()) # No N/A␣
↪→as csp gets dropped

print("data_macro_mod contains", len(data_macro_mod), "observations and",␣
↪→len(data_macro_mod.columns)-1, "macro indicators")

data_macro_mod contains 240 observations and 8 macro indicators

Interacting macro economics indicators with the data I want to merge macro indicators
with the data. I first build a table of macro indicator indexed by dates defined by the merged_data
dataframe then I create an interaction function because I have three datasets to interact: data;
merged_data_top I and merged_data_bottom (i.e. the top and bottom 1000 firms at each time
period)

[]: def interact_macro_data(merged_data_updt_dummy, data_macro, characteristics,␣
↪→macro_indicators, minmax=True):

data = merged_data_updt_dummy.copy()
merged_and_macro = pd.

↪→merge(data[['DATE']],data_macro,left_on='DATE',right_on='yyyymm',how='left')
data = data.reset_index(drop=True)
merged_and_macro = merged_and_macro.reset_index(drop=True)
for i in characteristics:

for j in macro_indicators:
data[i+'*'+j] = data[i]*merged_and_macro[j]

features = sorted(list(set(data.columns).difference({'DATE', 'RET',␣
↪→'permno'})))

if minmax:
X = MinMaxScaler((-1,1)).fit_transform(data[features])
X = pd.DataFrame(X, columns=features)
X = pd.concat([data[['DATE', 'RET', 'permno']], X], axis=1)

else:
X = data

y = data['RET']
return X, y

SPLITING INTO TRAINING TESTING AND VALIDATION SETS I transform dates
to np in order to manipulate them later

[]: start_date_validation = np.datetime64('2009-01-31')
start_date_testing = np.datetime64('2015-01-31')

[]: def splitting_sets(data):
X_training, y_training =␣

↪→interact_macro_data(data[data['DATE']<start_date_validation],data_macro_mod[data_macro_mod['yyyymm']<start_date_validation],characteristics,␣
↪→macro_indicators,minmax=True)

X_validation, y_validation =␣
↪→interact_macro_data(data[(data['DATE']<start_date_testing)&(data['DATE']>=start_date_validation)],data_macro_mod[(data_macro_mod['yyyymm']<start_date_testing)&(data_macro_mod['yyyymm']>=start_date_validation)],characteristics,macro_indicators,␣
↪→minmax=True)

X_testing, y_testing =␣
↪→interact_macro_data(data[data['DATE']>=start_date_testing],data_macro_mod[data_macro_mod['yyyymm']>=start_date_testing],characteristics,␣
↪→macro_indicators,minmax=True)

return X_training, X_validation, X_testing, y_training, y_validation,␣
↪→y_testing

The final form is organized as such:

• For each of the 3 dataframes: top bottom and whole panel
• create validation testing and training dependent and independent matrices
• create reference matrices for each design matrix containing the date, the ID and the return

associated to each set of feature - This will be used for checking purposes
• In the reference dataframes and for each dependent variable representing the returns, trans-

form the returns from Objects to Float ; for manipulation purposes

[]: def final_form(data):

X_trn, X_vld, X_tst, y_trn, y_vld, y_tst = splitting_sets(data)

X_trn_ref = X_trn
X_vld_ref = X_vld
X_tst_ref = X_tst

X_trn_ref['RET'] = X_trn['RET'].astype(float)
X_vld_ref['RET'] = X_vld['RET'].astype(float)
X_tst_ref['RET'] = X_tst['RET'].astype(float)

X_trn = X_trn.drop(['DATE', 'RET', 'permno'],axis=1)
X_vld = X_vld.drop(['DATE', 'RET', 'permno'],axis=1)
X_tst = X_tst.drop(['DATE', 'RET', 'permno'],axis=1)

y_trn = y_trn.astype(float)
y_vld = y_vld.astype(float)
y_tst = y_tst.astype(float)

return X_trn, X_vld, X_tst, X_trn_ref , X_vld_ref , X_tst_ref ,␣
↪→y_trn,y_vld,y_tst

[]: X_trn_bot, X_vld_bot, X_tst_bot, X_trn_ref_bot , X_vld_ref_bot , X_tst_ref_bot,␣
↪→y_trn_bot,y_vld_bot, y_tst_bot = final_form(merged_bottom_mod)

X_trn, X_vld, X_tst, X_trn_ref , X_vld_ref , X_tst_ref, y_trn,y_vld, y_tst =␣
↪→final_form(merged_top_mod)

Saving in drive

[]: import pickle

[]: '''
import pandas as pd

List of DataFrames
dfs_bot = [X_trn_bot, X_vld_bot, X_tst_bot, X_trn_ref_bot, X_vld_ref_bot,␣
↪→X_tst_ref_bot, y_trn_bot, y_vld_bot, y_tst_bot]

dfs = [X_trn, X_vld, X_tst, X_trn_ref, X_vld_ref, X_tst_ref, y_trn, y_vld, y_tst]

Base path
base_path = "/content/drive/MyDrive/charbel/"

Save DataFrames
for df, name in zip(dfs_bot + dfs, ['X_trn_bot', 'X_vld_bot', 'X_tst_bot',␣
↪→'X_trn_ref_bot', 'X_vld_ref_bot', 'X_tst_ref_bot', 'y_trn_bot', 'y_vld_bot',␣
↪→'y_tst_bot',

'X_trn', 'X_vld', 'X_tst', 'X_trn_ref',␣
↪→'X_vld_ref', 'X_tst_ref', 'y_trn', 'y_vld', 'y_tst']):

path = base_path + f"{name}.pkl"
df.to_pickle(path)

'''

The problem here is that since we found the top 1000 firms at each date Some firms may be present
in a given month (t) but not in t+1 . Thus r_i,t+1 for z_i,t is not feasible

I WILL WORK,with ri,t and x i,t

NOW

• X_trn , X_vld , X_tst , y_trn , y_tst , y_vld have corresponding indeces add _bot for
bottom panel data

• Use X_trn_ref , X_vld_ref , X_tst_ref to check on date/ret/permno add _bot for bottom
panel

Empirics: What is the dataset about?

[]: merged_top_mod['RET'] =merged_top_mod['RET'].astype(float) # NEED TO CONVERT␣
↪→RET TO FLOAT64

[]: mean_ret = merged_top_mod.groupby("DATE")['RET'].mean()
#print(mean_ret.head(3))

[]: #Now for the tbl (risk free rate)
rf = data_macro_mod['tbl']

[]: df = pd.DataFrame({'index': mean_ret.index, 'values': mean_ret.values})
df1 = pd.DataFrame({'index': mean_ret.index, 'values': rf})

plt.plot(df['index'], df['values'], linestyle='-', marker='', color='black',␣
↪→linewidth=0.5)

plt.scatter(df['index'], df['values'], label='Mean Return for top 1000 firms',␣
↪→color='black')

plt.scatter(df['index'],df1['values'], label='Risk Free Rate', color = 'red',␣
↪→s=2)

plt.gca().xaxis.set_major_locator(plt.MaxNLocator(integer=True))
plt.xticks(rotation=20)
plt.title('Mean returns of top firms vs risk free rate')
plt.xlabel('Date')
plt.ylabel('Return')
plt.legend()

plt.grid(True, linestyle=':', linewidth=0.2)
plt.savefig('plot.svg', format='svg')

plt.show()

[]: rolling_window_size = 12
def mad_calculation(data):

return np.abs(data - data.mean()).mean()

mad_result = merged_top_mod['RET'].rolling(window=rolling_window_size).
↪→apply(mad_calculation, raw=True)

[]: mad_result = merged_top_mod['RET'].rolling(window=rolling_window_size).
↪→apply(mad_calculation, raw=True)

plt.plot(merged_top_mod['DATE'], mad_result, label="Volatility", color='grey')
plt.xlabel('Date')
plt.ylabel('Mean Absolute Deviation')
plt.title('Volatility (1 yr. rolling window)')
plt.legend()

Save the plot as an SVG file
plt.savefig('mad_plot.svg')

Show the plot
plt.show()

[]: #sector diagram
#print(merged_top_mod.head())

result = merged_top_mod.groupby('permno').apply(lambda group: group.
↪→filter(like='sic_').eq(1).idxmax(axis=1))

result_df = result.reset_index(level=0)
result_df.columns = ['permno', 'sic']
result_df = result_df.drop_duplicates(subset='permno', keep='first')

Print or use the result DataFrame as needed
print(result_df)

#result.reset_index(drop=True)

#result.columns = ['id', 'sic_associated']

#print(result)
#print(len(result))

permno sic
232087 0 sic_1
234022 1 sic_1
209067 2 sic_82
2004 3 sic_63
144055 4 sic_35
...
213368 3357 sic_60
147026 3358 sic_28
224075 3359 sic_1
212003 3360 sic_1
218011 3361 sic_73

[3362 rows x 2 columns]

Quantile Analysis

[]: returns_data = merged_top_mod['RET']
quant_val = 1/8*(np.arange(1,8))
quantiles = returns_data.quantile(quant_val)
for i in quant_val:

if i==1/8:
Qi_interval = (float('-inf'), quantiles[i])

elif i ==8/8:
Qi_interval = (quantiles[i], float('inf'))

else:
Qi_interval = (quantiles[i-1/8], quantiles[i])

print(Qi_interval)

(-inf, -0.083271625)
(-0.083271625, -0.0390485)
(-0.0390485, -0.011415375)
(-0.011415375, 0.0099945)
(0.0099945, 0.031626375)
(0.031626375, 0.05726025)
(0.05726025, 0.09729550000000001)

[]: import numpy as np
import matplotlib.pyplot as plt
data = returns_data.tolist()
Assuming 'data' is the correct variable name
q1 = np.percentile(data, 25)
q2 = np.percentile(data, 50)
q3 = np.percentile(data, 75)
p10 = np.percentile(data, 10)
p90 = np.percentile(data, 90)

plt.figure(figsize=(10, 4))
plt.hist(data, bins=50, alpha=0.6, color='grey', label="Return Distribution",␣
↪→range=[-1, 1])

plt.axvline(x=q1, color='r', linestyle='--', label="Q1 (25th percentile)")
plt.axvline(x=q2, color='b', linestyle='--', label="Q2 (Median/50th percentile)")
plt.axvline(x=q3, color='r', linestyle='--', label="Q3 (75th percentile)")
plt.axvline(x=p10, color='c', linestyle='-.', label="10th percentile")
plt.axvline(x=p90, color='m', linestyle='-.', label="90th percentile")

plt.title("Quantile Representation of Returns")
plt.xlabel("Monthly Holding Return")
plt.ylabel("Frequency")
plt.legend()
plt.grid(True)

Save the plot as a PNG file
plt.savefig('quantile_representation.png', format='png')
plt.show()

Industries Represented

[]: industry_mapping = {
range(1,9): 'Agriculture, forestry and fishing',
range(10,14): 'Mining',
range(15,19): 'Construction',
range(20, 40): 'Manufacturing',
range(40, 50): 'Transportation and public utilities',
range(50, 52): 'Wholesale trade',
range(52, 60): 'Retail trade',
range(60, 68): 'Finance, insurance and real estate',
range(70, 90): 'Services',
range(91, 100): 'Public administration'

}

[]: proportions_df = pd.DataFrame(list(proportions.items()), columns=['sic',␣
↪→'proportion'])

def map_sic_to_group(sic_value):
for sic_range, industry_group in industry_mapping.items():

if int(sic_value.split('_')[1]) in sic_range:
return industry_group

return 'Unknown'

proportions_df['industry_group'] = proportions_df['sic'].apply(map_sic_to_group)
final_ind = proportions_df.groupby('industry_group').sum()

plt.figure(figsize=(8, 8))
num_parts = 70

colors = plt.cm.viridis(np.linspace(0, 2, num_parts))

plt.pie(final_ind['proportion'], labels=final_ind.index, colors=colors)

Save the plot as a PNG file
plt.savefig('pie_chart.png')

Show the plot
plt.show()

<ipython-input-165-3720d48fe442>:10: FutureWarning: The default value of
numeric_only in DataFrameGroupBy.sum is deprecated. In a future version,
numeric_only will default to False. Either specify numeric_only or select only
columns which should be valid for the function.

final_ind = proportions_df.groupby('industry_group').sum()

Those selected permnos will be used for the tailor made performance evaluation metric

• I first select the permnos that are always repeated int he dataset
• There are 199 stocks available

[]: grouped_df = merged_top_mod.groupby('permno')['DATE'].agg(list).reset_index()
selected_permnos = []
for index, row in grouped_df.iterrows():

if row['DATE'] == unique_dates_df['unique_dates'].tolist():
selected_permnos.append(row['permno'])

[]: print("Number of available stocks for building a dynamic strategy "␣
↪→,len(selected_permnos))

#print(selected_permnos)
#print(grouped_df.iloc[44,:].tolist()) # checking if code worked

Number of available stocks for building a dynamic strategy 199

0.1.2 Statistical Modeling

Linear modeling on top panel. I first regress using a standard linear regression on the top panel and
on the benchmark models The first R squared function is best suited for the model , But I had to
use another R squared function , as the Most suited R squared is not convienient for more complex
models : With Trees, GAM and even With elasticNet (using Huber) - it becomes computationally
expensive) in order to be consistent, I use two types of out of sample R squared.

In the following 15 boxes I run a linear regression on benchmark low dimensional factor models and
on the whole panel.

[]: from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import ParameterGrid
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import ParameterGrid
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import HuberRegressor

[]: def R_oos(actual, predicted):
actual, predicted = np.array(actual), np.array(predicted)
actual_mean = np.mean(actual)
return 1 - (np.dot((actual-predicted),(actual-predicted)))/np.

↪→dot((actual-actual_mean),(actual-actual_mean))

[]: def evaluate(actual, predicted, insample):
if insample == True:

print('*'*15+'In-Sample Metrics'+'*'*15)
print(f'The in-sample R2 is {r2_score(actual,predicted)*100:.7f}%')
print(f'The in-sample MSE is {mean_squared_error(actual,predicted):.7f}')

else:
print('*'*15+'Out-of-Sample Metrics'+'*'*15)
print(f'The out-of-sample R2 is {R_oos(actual,predicted)*100:.7f}%')
print(f'The out-of-sample MSE is {mean_squared_error(actual,predicted):.

↪→7f}')

Naive OLS on the feature set

[]: from sklearn.linear_model import LinearRegression

OLS = LinearRegression().fit(X_trn,y_trn)
evaluate(y_trn, OLS.predict(X_trn), insample=True)
evaluate(y_tst, OLS.predict(X_tst),insample = False)

***************In-Sample Metrics***************
The in-sample R2 is 19.9166341%
The in-sample MSE is 0.0092240
***************Out-of-Sample Metrics***************
The out-of-sample R2 is -14276.6131380%
The out-of-sample MSE is 1.2355870

Low dimensional Linear Model using OLS I use well documented factors.Typically considered robust
ols_3

[]: from sklearn.linear_model import LinearRegression

OLS with preselected size, bm, and momentum covariates
features_3 = ['mvel1','bm','mom1m','mom6m','mom12m','mom36m']
OLS_3 = LinearRegression().fit(X_trn[features_3],y_trn)
evaluate(y_trn, OLS_3.predict(X_trn[features_3]), insample=True)
evaluate(y_tst, OLS_3.predict(X_tst[features_3]),insample=False)

***************In-Sample Metrics***************
The in-sample R2 is 0.4359409%
The in-sample MSE is 0.0114678
***************Out-of-Sample Metrics***************
The out-of-sample R2 is -1.1550289%
The out-of-sample MSE is 0.0086937

Naive linear model, estimated with huber loss function

[]: from sklearn.linear_model import HuberRegressor

epsilon = np.max(((y_trn-OLS.predict(X_trn)).quantile(.999),1))
OLS_H = HuberRegressor(epsilon=epsilon).fit(X_trn,y_trn)
evaluate(y_trn, OLS_H.predict(X_trn), insample=True)
evaluate(y_tst, OLS_H.predict(X_tst),insample= False)

***************In-Sample Metrics***************
The in-sample R2 is 13.7138623%
The in-sample MSE is 0.0099385
***************Out-of-Sample Metrics***************
The out-of-sample R2 is -36.9084712%
The out-of-sample MSE is 0.0117665

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_huber.py:342:
ConvergenceWarning: lbfgs failed to converge (status=1):

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html

self.n_iter_ = _check_optimize_result("lbfgs", opt_res, self.max_iter)

linear model with selected features estimated using huber loss

[]: from sklearn.linear_model import HuberRegressor

OLS by Huber robust objective function
with preselected size, bm, and momentum covariates
epsilon = np.max(((y_trn-OLS_3.predict(X_trn[features_3])).quantile(.999),1))
features_3 = ['mvel1','bm','mom1m','mom6m','mom12m','mom36m']
OLS_H_3 = HuberRegressor(epsilon=epsilon).fit(X_trn[features_3],y_trn)

evaluate(y_trn, OLS_H_3.predict(X_trn[features_3]), insample=True)
evaluate(y_tst, OLS_H_3.predict(X_tst[features_3]),insample=False)

***************In-Sample Metrics***************
The in-sample R2 is 0.2131522%
The in-sample MSE is 0.0114935
***************Out-of-Sample Metrics***************
The out-of-sample R2 is -0.4378110%
The out-of-sample MSE is 0.0086321

[]: from sklearn.linear_model import LinearRegression

features_3 = ['mvel1','bm','mom12m']
OLS_3 = LinearRegression().fit(X_trn[features_3],y_trn)

evaluate(y_tst, OLS_3.predict(X_tst[features_3]),insample=False)

***************Out-of-Sample Metrics***************
The out-of-sample R2 is -0.3647499%
The out-of-sample MSE is 0.0086258

[]: features_7 = ['mvel1','bm','mom12m','acc','roaq','agr','egr']
OLS_7 = LinearRegression().fit(X_trn[features_7],y_trn)

evaluate(y_tst, OLS_7.predict(X_tst[features_7]),insample=False)

***************Out-of-Sample Metrics***************
The out-of-sample R2 is -1.4084132%
The out-of-sample MSE is 0.0087155

[]: features_15 =␣
↪→['mvel1','bm','mom12m','acc','roaq','agr','egr','dy','beta','retvol','turn','lev','sp','mom36m']

OLS_15 = LinearRegression().fit(X_trn[features_15],y_trn)

evaluate(y_tst, OLS_15.predict(X_tst[features_15]),insample=False)

***************Out-of-Sample Metrics***************
The out-of-sample R2 is -3.7306822%
The out-of-sample MSE is 0.0089151

[]: def R_oos_other(actual, predicted):
actual, predicted = np.array(actual), np.array(predicted).flatten()
predicted = np.where(predicted<0,0,predicted)
return 1 - (np.dot((actual-predicted),(actual-predicted)))/(np.

↪→dot(actual,actual))

[]: def eval_other(actual, predicted, insample):
if insample == True:

print('*'*15+'In-Sample Metrics'+'*'*15)
print(f'The in-sample R2 is {r2_score(actual,predicted)*100:.2f}%')
print(f'The in-sample MSE is {mean_squared_error(actual,predicted):.3f}')

else:
print('*'*15+'Out-of-Sample Metrics'+'*'*15)
print(f'The out-of-sample R2 is {R_oos_other(actual,predicted)*100:.

↪→2f}%')
print(f'The out-of-sample MSE is {mean_squared_error(actual,predicted):.

↪→7f}')

[]: from sklearn.linear_model import LinearRegression
features_3 = ['mvel1','bm','mom12m']
OLS_3 = LinearRegression().fit(X_trn[features_3],y_trn)

eval_other(y_tst, OLS_3.predict(X_tst[features_3]),insample=False)

***************Out-of-Sample Metrics***************
The out-of-sample R2 is 0.68%
The out-of-sample MSE is 0.0086258

[]: features_7 = ['mvel1','bm','mom12m','acc','roaq','agr','egr']
OLS_7 = LinearRegression().fit(X_trn[features_7],y_trn)

eval_other(y_tst, OLS_7.predict(X_tst[features_7]),insample=False)

***************Out-of-Sample Metrics***************
The out-of-sample R2 is 0.41%
The out-of-sample MSE is 0.0087155

[]: features_15 =␣
↪→['mvel1','bm','mom12m','acc','roaq','agr','egr','dy','beta','retvol','turn','lev','sp','mom36m']

OLS_15 = LinearRegression().fit(X_trn[features_15],y_trn)

eval_other(y_tst, OLS_15.predict(X_tst[features_15]),insample=False)

***************Out-of-Sample Metrics***************
The out-of-sample R2 is -0.52%
The out-of-sample MSE is 0.0089151

This is another Notebook. There are many output cells that I have to delete as they take too much
screen space.Retreive the full notebook on github.com/charbelkhazen

[]: import numpy as np
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import ParameterGrid
import time
from sklearn.linear_model import LinearRegression, HuberRegressor
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

Ideally I would like to use the R-squared function used previously (i.e. the commented function
below). However, this function is computationally expensive, as it can consume more than 50gb
RAM if used in PCR.

[]: def R_oos(actual, predicted):
actual, predicted = np.array(actual), np.array(predicted).flatten()
predicted = np.where(predicted<0,0,predicted)
return 1 - (np.dot((actual-predicted),(actual-predicted)))/(np.

↪→dot(actual,actual))

def val_fun(model, params: dict, X_trn, y_trn, X_vld, y_vld, illustration=True,␣
↪→sleep=0):

best_mse_oos = None
lst_params = list(ParameterGrid(params))
for param in lst_params:

if best_mse_oos == None:
mod = model().set_params(**param).fit(X_trn, y_trn)
best_mod = mod
y_pred = mod.predict(X_vld)
best_ros = R_oos(y_vld, y_pred)
best_mse_oos = mean_squared_error(y_vld,y_pred)
best_param = param
if illustration:

print(f'Model with params: {param} finished.')
print(f'with out-of-sample MSE on validation set: {best_mse_oos:.

↪→5f}')
print(f'with out-of-sample R-squared on validation set:␣

↪→{best_ros*100:.7f}%')
print('*'*60)

else:
time.sleep(sleep)
mod = model().set_params(**param).fit(X_trn, y_trn)
y_pred = mod.predict(X_vld)
ros = R_oos(y_vld, y_pred)
mse_oos = mean_squared_error(y_vld,y_pred)
if illustration:

print(f'Model with params: {param} finished.')

print(f'with out-of-sample MSE on validation set: {mse_oos:.5f}')
print(f'with out-of-sample R-squared on validation set: {ros*100:

↪→.7f}%')
print('*'*60)

if mse_oos < best_mse_oos:
best_mse_oos = mse_oos
best_mod = mod
best_param = param

if illustration:
print('\n'+'#'*60)
print('Tuning process finished!!!')
print(f'The best setting is: {best_param}')
print(f'with MSE OOS {best_mse_oos:.5f} on validation set.')
print('#'*60)

return best_mod

[]: # Evaluation Output
def evaluate(actual, predicted, insample=False):

if insample:
print('*'*15+'In-Sample Metrics'+'*'*15)
print(f'The in-sample R2 is {r2_score(actual,predicted)*100:.2f}%')
print(f'The in-sample MSE is {mean_squared_error(actual,predicted):.3f}')

else:
print('*'*15+'Out-of-Sample Metrics'+'*'*15)
print(f'The out-of-sample R2 is {R_oos(actual,predicted)*100:.5f}%')
print(f'The out-of-sample MSE is {mean_squared_error(actual,predicted):.

↪→8f}')

[]: class PCRegressor:

def __init__(self,n_PCs=1,loss='mse'):
self.n_PCs = n_PCs
if loss not in ['huber','mse']:

raise AttributeError(
f"The loss should be either 'huber' or 'mse', but {loss} is given"
)

else:
self.loss = loss

def set_params(self, **params):
for param in params.keys():

setattr(self, param, params[param])
return self

def fit(self,X,y):
X = np.array(X)
N,K = X.shape

y = np.array(y_trn).reshape((N,1))
self.mu = np.mean(X,axis=0).reshape((1,K))
self.sigma = np.std(X,axis=0).reshape((1,K))
self.sigma = np.where(self.sigma==0,1,self.sigma)
X = (X-self.mu)/self.sigma #standardize
pca = PCA() #call the sklearn class
X = pca.fit_transform(X)[:,:self.n_PCs] #Projected x (Q-dimensional)
self.pc_coef = pca.components_.T[:,:self.n_PCs] #P by Q factor loading
if self.loss == 'mse':

self.model = LinearRegression().fit(X,y) #fit the low dimensional␣
↪→data

else:
self.model = HuberRegressor().fit(X,y)

return self

def predict(self,X):
X = np.array(X)
X = (X-self.mu)/self.sigma
X = X @ self.pc_coef
return self.model.predict(X)

[]: params = {'n_PCs':[1,3,5,7,10,50],'loss':['mse','huber']}
PCR =␣
↪→val_fun(PCRegressor,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

evaluate(y_trn, PCR.predict(X_trn), insample=True)
evaluate(y_tst, PCR.predict(X_tst))

[]: params = {'n_PCs':[100,300,500],'loss':['mse','huber']}
PCR =␣
↪→val_fun(PCRegressor,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

[]: evaluate(y_tst, PCR.predict(X_tst))

***************Out-of-Sample Metrics***************
The out-of-sample R2 is 0.14980%
The out-of-sample MSE is 0.01285622

[]: params = {'n_PCs':[50],'loss':['mse']}
PCR =␣
↪→val_fun(PCRegressor,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

evaluate(y_tst, PCR.predict(X_tst))
params = {'n_PCs':[50],'loss':['huber']}
PCR =␣
↪→val_fun(PCRegressor,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

evaluate(y_tst, PCR.predict(X_tst))

OVERALL THE BEST TUNING PARAMETER IS NPC = 50

INDEPENDENT COMPONENT ANALYSIS I USE FAST ICA TO REDUCE THE FEA-

TURE SPACE UNFORTUNATELY; THE RELEVANCE CRITERION OF PC SELECTION IS
NOT EXPLICIT IN FAST ICA (It might be random), I use the POWER DATA METHOD

Independent Component Analysis
[]: from sklearn.decomposition import FastICA

class MyNewICA:

def __init__(self, n_PCs=1, loss='mse'):
self.n_PCs = n_PCs
if loss not in ['huber', 'mse']:

raise AttributeError(
f"The loss should be either 'huber' or 'mse', but {loss} is␣

↪→given"
)

else:
self.loss = loss

self.model = None

def set_params(self, **params):
for param in params.keys():

setattr(self, param, params[param])
return self

def fit(self, X, y):
X = np.array(X)
N, K = X.shape
y = np.array(y).reshape((N, 1))
self.mu = np.mean(X, axis=0).reshape((1, K))
self.sigma = np.std(X, axis=0).reshape((1, K))
self.sigma = np.where(self.sigma == 0, 1, self.sigma)
X = (X - self.mu) / self.sigma
ica = FastICA(whiten='unit-variance',random_state=42) #Fix some random␣

↪→number So that the directions remain the same (otherwise you will get the␣
↪→same span but different directions)

s_ica = ica.fit(X).transform(X)
ica_coef = ica.mixing_
self.original_coef = ica_coef
self.original_s = s_ica
POWER DATA FOR SOURCE ORDERING
sources_trans = s_ica.T
squared_source_matrix = np.square(sources_trans)
squared_A = np.square(ica_coef)
sum_squared_elements = np.sum(squared_A, axis=0)
result_matrix = sum_squared_elements.reshape(1, -1)
qd_matrix = result_matrix.T * squared_source_matrix

mean_per_row = np.mean(qd_matrix, axis=1, keepdims=True)
selected_indices = np.argsort(mean_per_row.flatten())[::-1][:self.n_PCs]
#GOT A LIST OF SELECTED ORDERS
self.selected_indices = selected_indices
self.new_ica_coef = ica_coef[:, selected_indices]
self.selected_sources = s_ica[:,selected_indices]
if self.loss == 'mse':

self.model = LinearRegression().fit(self.selected_sources , y)
else:

self.model = HuberRegressor(alpha=0.025).fit(self.selected_sources,␣
↪→y)

return self

def predict(self, X):
X = np.array(X)
X = (X - self.mu) / self.sigma
projections = np.dot(X, self.new_ica_coef)
self.projections = projections
self.predicted_y = np.dot(projections, self.model.coef_.T) + self.model.

↪→intercept_
return self.predicted_y

[]: params = {'n_PCs':[10,50,100,200],'loss':['mse','huber']}
MyNewICA1 = val_fun(MyNewICA, params=params, X_trn=X_trn, y_trn=y_trn,␣
↪→X_vld=X_vld, y_vld=y_vld, sleep=3)

evaluate(y_tst, MyNewICA1.predict(X_tst))

NOW; I estimate l1, l2, and EN (Each using MSE and Huber as the loss function) using Acceler-
ated Proximal Gradient Descent

I use APGDpy libray for Accelerated Proximal Gradient descent method as coding an accelerated
proximal gradient descent method was resulting in degenerate results. The library Provides an
apg_solve() function.

• Solving APGD requires defining a gradient function
• and a Proximal operator corresponding to the penalization used
• I define a gradient function for Huber and for the quadratic loss
• and a proximal operator for l1 l2 and EN penalties (Their corresponding mathematical for-

mulae are found in appendix (Numerical Optimization section)

I fix the huber treshold for computational purposes

This is a benchmark example of a Static Proximal Gradient descent algorithm on Lasso using
Squared loss . “Static” because the Gradient descent and regularization tuning parameters are fixed
- see mu and t . Note: The value of the Gradient descent parameter (step parameter) “t” is not
explicitely defined. The function solve.apgd() does the tuning automatically.

Testing Accelerated Proximal Gradient descent on simulated data exhibiting linear relationship see
plot (3 boxes futher)

[]: import apgpy

[]: import apgpy as apg
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format = 'svg'

n = 2
m = 100
A = np.column_stack((np.ones(m), np.linspace(1, 10, m) + np.random.randn(m)))
b = 2 * np.linspace(1, 10, m) + 1 + 0.5 * np.random.randn(m)

[]: import matplotlib.pyplot as plt

Plotting the points formed by A and b
plt.scatter(A[:, 1], b, label='Data Points')
plt.xlabel('Feature (x)')
plt.ylabel('Dependent Variable (y)')
plt.title('Generated Data Points')
plt.legend()
plt.show()

[]: coef1_values = np.array([]) # Initialize array for coefficient 1
coef2_values = np.array([]) # Initialize array for coefficient 2

def quad_grad(y):
return np.dot(A.T, (np.dot(A, y) - b))

def soft_thresh(y, t):
return np.sign(y) * np.maximum(abs(y) - t * mu, 0)

mu_values = np.logspace(2, 0, num=100)
for mu in mu_values:

x = apg.solve(quad_grad, soft_thresh, np.zeros(n), use_restart=True,␣
↪→eps=1e-12, quiet=True)
coef1_values = np.append(coef1_values, x[0])
coef2_values = np.append(coef2_values, x[1])
print(f"For mu = {mu}, the coefficients are {x}")

SEE HOW COEFFICIENT GETS SPARSE WHEN WE INCREASE LAMBDA.

• I apply this Accelerated Proximal Gradient Descent Algorithm on my data

• This takes 30 minutes

[]: np_ess_X = np.array(X_trn)

[]: #num_rows_to_display = 3
#subset_array = np_ess_X[:num_rows_to_display, :]
#print(subset_array)
np_ess_y = np.array(y_trn)

[]: n = np_ess_X.shape[1]

[]: for mu_value in range(20, 0, -1):
mu = mu_value

def quad_grad(y):
return np.dot(np_ess_X.T, (np.dot(np_ess_X, y) - np_ess_y))

def soft_thresh(y, t):
return np.sign(y) * np.maximum(abs(y) - t * mu, 0)

x = apg.solve(quad_grad, soft_thresh, np.zeros(n), use_restart=True,␣
↪→eps=1e-12, quiet=True)

print(f"For mu = {mu}, the coefficients are {x}")

Static accelerated Proximal Gradient descent algorithm for huber loss (With lp normed pernalties).

I simulate a LM model with outliers and then 1. Fit by OLS 2. Fit Huber loss (using APGD)

[]: import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

n = 2
m = 100

Generating data
A = np.column_stack((np.ones(m), np.linspace(1, 10, m) + np.random.randn(m)))
b = 2 * np.linspace(1, 10, m) + 1 + 0.5 * np.random.randn(m)

Introducing outliers
outliers_A = np.column_stack((np.ones(10), np.linspace(1, 10, 10) + np.random.
↪→randn(10)))

outliers_b = 100 * np.ones(10)
A = np.vstack([A, outliers_A])
b = np.concatenate([b, outliers_b])

Computing OLS regression
ols_model = LinearRegression().fit(A, b)
ols_intercept, ols_slope = ols_model.intercept_, ols_model.coef_[1]

Plotting the points formed by A and b
plt.scatter(A[:, 1], b, label='Data Points', color="grey")

Plotting OLS regression line
x_vals = np.linspace(0, 12, 100)
y_ols = ols_intercept + ols_slope * x_vals
plt.plot(x_vals, y_ols, label='OLS Regression', color='red')

plt.xlabel('Feature (x)')
plt.ylabel('Dependent Variable (y)')
plt.title('Generated Data Points with OLS Regression')
plt.legend()
plt.show()

[]: import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import apgpy as apg
n = 2
m = 100

A = np.column_stack((np.ones(m), np.linspace(1, 10, m) + np.random.randn(m)))
b = 2 * np.linspace(1, 10, m) + 1 + 0.5 * np.random.randn(m)

outliers_A = np.column_stack((np.ones(10), np.linspace(1, 10, 10) + np.random.
↪→randn(10)))

outliers_b = 100 * np.ones(10)
A = np.vstack([A, outliers_A])
b = np.concatenate([b, outliers_b])

plt.scatter(A[:, 1], b, label='Data Points', color="grey")

coef1_values = np.array([])
coef2_values = np.array([])
delta_values = [2, 30]

for delta in delta_values:
mu = 0 #i.e. MSE ; NO Lnormed Penalizarion

def huber_loss_gradient(y):
residual = np.dot(A, y) - b
huber_grad = np.dot(A.T, np.where(np.abs(residual) <= delta, residual,␣

↪→delta * np.sign(residual)))
return huber_grad

def soft_thresh(y, t):
return np.sign(y) * np.maximum(abs(y) - t * mu, 0)

x = apg.solve(huber_loss_gradient, soft_thresh, np.zeros(n),␣
↪→use_restart=True, eps=1e-12, quiet=True)

coef1_values = np.append(coef1_values, x[0])
coef2_values = np.append(coef2_values, x[1])

y_reg = x[0] + x[1] * np.linspace(0, 12, 100)
plt.plot(np.linspace(0, 12, 100), y_reg, label=f'Regression Line␣

↪→(Delta={delta})')

plt.xlabel('Feature (x)')
plt.ylabel('Dependent Variable (y)')
plt.title('Generated Data Points with Huber Regression Lines')
plt.legend()
plt.show()

We see how huber penalty mitigates the effect of outliers. And we see how the huber loss minimiza-
tion can be done by using the accelerated proximal gradient descent method. (By changing the mu
values , you can test for lasso + huber)

Static Accelerated Proximal Gradient descent for Elastic Net penalization.

[]: n = 2
m = 100
A = np.column_stack((np.ones(m), np.linspace(1, 10, m) + np.random.randn(m)))
b = 2 * np.linspace(1, 10, m) + 1 + 0.5 * np.random.randn(m)

[]: # Plotting the points formed by A and b
plt.scatter(A[:, 1], b, label='Data Points')
plt.xlabel('Feature (x)')
plt.ylabel('Dependent Variable (y)')
plt.title('Generated Data Points')
plt.legend()
plt.show()

[]: coef1_values_en = np.array([]) # Initialize array for coefficient 1
coef2_values_en = np.array([]) # Initialize array for coefficient 2

rho = 0.1
for mu_value in range(100, 0, -1):

mu = mu_value

def quad_grad(y):
return np.dot(A.T, (np.dot(A, y) - b))

def elastic_net_proximal_operator(y, t):
soft_thresh_term = np.sign(y) * np.maximum(np.abs(y) - t * mu * (1 - rho),␣

↪→0)
return soft_thresh_term / (1 + t * rho * mu)

x_en = apg.solve(quad_grad, elastic_net_proximal_operator, np.zeros(n),␣
↪→use_restart=True, eps=1e-12, quiet=True)

coef1_values_en = np.append(coef1_values_en, x_en[0])

coef2_values_en = np.append(coef2_values_en, x_en[1])

print(f"For mu = {mu}, the coefficients are {x_en}")

[]: mu_values = np.arange(100, 0, -1)
plt.plot(mu_values, coef1_values_en , 'o', label='Coefficient 1',markersize = 2)
plt.plot(mu_values, coef2_values_en , 'o', label='Coefficient 2', markersize =␣
↪→2, color = "grey")

plt.xlabel('Penalization Hyperparameter')
plt.ylabel('Coefficient Value')
plt.legend()
plt.show()

Elastic Net Induces sparsity A low Rho and large lambda (here called mu) will encourage
sparsity as they increase penalty on L1 See EN penalty formula

I apply Accelerated Proximal Gradient Descent to find:

1. Lasso with squared loss
2. Lasso with Huber loss
3. Elastic Net with squared loss
4. Elastic Net with huber loss

[]: class LassoMse:

def __init__(self, mu=1):
self.mu = mu

def set_params(self, **params):
for param in params.keys():

setattr(self, param, params[param])
return self

def fit(self, X, y):
X = np.array(X)
n = X.shape[1]
y = np.array(y)
def quad_grad(beta):

return np.dot(X.T, (np.dot(X, beta) - y))

def soft_thresh(beta, t):
return np.sign(beta) * np.maximum(abs(beta) - t * self.mu, 0)

coef_lasso_mse = apg.solve(quad_grad, soft_thresh, np.zeros(n),␣
↪→use_restart=True, eps=1e-12, quiet=True)

self.coef = coef_lasso_mse
return self

def predict(self, X):
return np.dot(X, self.coef)

I define a set of 10 log scaled range from eˆ-3 to 20 lambda values. I cannot rely on a bigger set.
This set alone takes approx 20 min without validation.

[]: params = {'mu': np.logspace(np.log10(0.001), np.log10(20), 10).tolist()}
lasso_mse =␣
↪→val_fun(LassoMse,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

This suggests that a higher penalization tuning rate might be better I repeat with another higher
range

[]: params = {'mu': np.logspace(np.log10(20), np.log10(900),10).tolist()}
lasso_mse =␣
↪→val_fun(LassoMse,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

I evaluate

[]: params = {'mu': [386.2441821090113]}
LassoMse =␣
↪→val_fun(LassoMse,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

evaluate(y_tst, LassoMse.predict(X_tst))

[]: class LassoHuber:

def __init__(self, mu=1, delta = 1):
self.mu = mu
self.delta = delta

def set_params(self, **params):
for param in params.keys():

setattr(self, param, params[param])
return self

def fit(self, X, y):
X = np.array(X)
n = X.shape[1]
y = np.array(y)

def huber_loss_gradient(beta):
residual = np.dot(X, beta) - y
huber_grad = np.dot(X.T, np.where(np.abs(residual) <= self.delta,␣

↪→residual, self.delta * np.sign(residual)))
return huber_grad

def soft_thresh(beta, t):
return np.sign(beta) * np.maximum(abs(beta) - t * self.mu, 0)

coef_lasso_huber = apg.solve(huber_loss_gradient, soft_thresh, np.
↪→zeros(n), use_restart=True, eps=1e-12, quiet=True)

self.coef = coef_lasso_huber
return self

def predict(self, X):
return np.dot(X, self.coef)

[]: params = {'mu': np.linspace(250,390,10).tolist(),'delta':[0.025]}
lassoHuber =␣
↪→val_fun(LassoHuber,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

evaluate(y_tst, lassoHuber.predict(X_tst))

Now; Elastic Net using MSE loss function

[]: class ElasticNetMse:

def __init__(self, mu=1, rho = 0.1): #birmania
self.mu = mu
self.rho = rho

def set_params(self, **params):
for param in params.keys():

setattr(self, param, params[param])
return self

def fit(self, X, y):
X = np.array(X)
n = X.shape[1]
y = np.array(y)

def quad_grad(beta):
return np.dot(X.T, (np.dot(X, beta) - y))

def elastic_net_proximal_operator(beta, t):
soft_thresh_term = np.sign(beta) * np.maximum(np.abs(beta) - t * self.mu␣

↪→* (1 - self.rho), 0)
return soft_thresh_term / (1 + t * self.rho * self.mu)

coef_en_mse = apg.solve(quad_grad, elastic_net_proximal_operator, np.
↪→zeros(n), use_restart=True, eps=1e-12, quiet=True)

self.coef = coef_en_mse

return self

def predict(self, X):
return np.dot(X, self.coef)

Low rho and Large mu will encourage sparisty ; I thus chose the following sets for mu and rho

[]: params = {'mu': np.logspace(np.log10(50), np.log10(900), 7).tolist(),'rho':[0.1]}

[]: ElasticNetMse =␣
↪→val_fun(ElasticNetMse,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

evaluate(y_tst, ElasticNetMse.predict(X_tst))

[]: class ElasticNetHuber:

def __init__(self, mu=1, rho = 0.1,delta =0.02): #birmania
self.mu = mu
self.delta = delta

self.rho = rho

def set_params(self, **params):
for param in params.keys():

setattr(self, param, params[param])
return self

def fit(self, X, y):
X = np.array(X)
n = X.shape[1]
y = np.array(y)

def huber_loss_gradient(beta):
residual = np.dot(X, beta) - y
huber_grad = np.dot(X.T, np.where(np.abs(residual) <= self.delta,␣

↪→residual, self.delta * np.sign(residual)))
return huber_grad

def elastic_net_proximal_operator(beta, t):
soft_thresh_term = np.sign(beta) * np.maximum(np.abs(beta) - t * self.mu␣

↪→* (1 - self.rho), 0)
return soft_thresh_term / (1 + t * self.rho * self.mu)

coef_en_huber = apg.solve(huber_loss_gradient,␣
↪→elastic_net_proximal_operator, np.zeros(n), use_restart=True, eps=1e-12,␣
↪→quiet=True)

self.coef = coef_en_huber

return self

def predict(self, X):
return np.dot(X, self.coef)

[]: params = {'mu': np.logspace(np.log10(20), np.log10(500), 10).tolist(),'delta':np.
↪→array([0.02, 0.03, 0.05, 0.1]),'rho':[0.1]}

ElasticNetHuber=␣
↪→val_fun(ElasticNetHuber,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)␣
↪→ # #need to run

[]: params = {'mu': np.linspace(60, 800, 5).tolist(),'delta':[0.025],'rho':[0.1]}
ElasticNetHuber=␣
↪→val_fun(ElasticNetHuber,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

evaluate(y_tst, ElasticNetHuber.predict(X_tst))

TREES

• I show how trees are equivalent to partitionning the feature space and to fitting a piecewise
constant function

• This is done for illustrative purposes only

[]: X_train_macro = X_trn[['ep']]
X_test_macro = X_vld[['ep']]

[]: combined_df = pd.concat([X_train_macro, X_test_macro], ignore_index=True)
combined_y = pd.concat([y_trn, y_vld], ignore_index=True)

[]: import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor, plot_tree
from sklearn.model_selection import train_test_split

reg_tree = DecisionTreeRegressor(max_depth=7)
reg_tree.fit(X_train_macro, y_trn)

plt.figure(figsize=(15, 10))

Plot the data points
plt.scatter(combined_df, combined_y, label='Returns')

plot_tree(reg_tree, filled=True, rounded=True, feature_names=X_train_macro.
↪→columns)

plt.savefig('regression_tree_plot.svg', format='svg', bbox_inches='tight')

Plot the piecewise constant function represented by the regression tree
plt.figure()
X_range = np.linspace(combined_df.min(), combined_df.max(), 1000).reshape(-1, 1)
y_pred = reg_tree.predict(X_range)

plt.scatter(combined_df, combined_y, label='Data Points', color='grey')
plt.plot(X_range, y_pred, color='black', label='Piecewise Constant Function')

Save the plot as an SVG file
plt.savefig('piecewise_constant_function_plot.svg', format='svg',␣
↪→bbox_inches='tight')

Plot the partitioned feature space
plt.figure()
plt.scatter(combined_df, combined_y, label='Returns')

Plot the partitioned feature space
for split_value in reg_tree.tree_.threshold[reg_tree.tree_.threshold != -2]:

plt.axvline(x=split_value, color='gray', linestyle='--', linewidth=2)

plt.title('Partitioned Feature Space')
plt.xlabel('Earning/Price rate ')
plt.ylabel('Return')
plt.legend()

Save the plot as an SVG file
plt.savefig('partitioned_feature_space_plot.svg', format='svg',␣
↪→bbox_inches='tight')

Show the plots
plt.show()

Evaluate the model
mse = np.mean((reg_tree.predict(X_test_macro) - y_vld) ** 2)
print(f"Mean Squared Error on test data: {mse}")

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does
not have valid feature names, but DecisionTreeRegressor was fitted with feature
names

warnings.warn(

Mean Squared Error on test data: 0.008963609722164017

Now let’s build a Regression Tree with cost complexity pruning regularization

Regression tree with pruning

[]: from sklearn.datasets import make_regression
from sklearn.tree import DecisionTreeRegressor, export_text, plot_tree
import matplotlib.pyplot as plt

[]: class RegressionTree:
def __init__(self, ccp_alpha=1e-06):

self.ccp_alpha = ccp_alpha
self.reg_tree = DecisionTreeRegressor(ccp_alpha=self.ccp_alpha)

def set_params(self, **params):
for param in params.keys():

setattr(self, param, params[param])
return self

def fit(self, X, y):

X = np.array(X)
y = np.array(y)
self.reg_tree.fit(X, y)
return self

def predict(self, X):
return self.reg_tree.predict(X)

[]: params = {'ccp_alpha': np.logspace(np.log10(1e-06), np.log10(1e-01), 5).tolist()}
RegressionTree=␣
↪→val_fun(RegressionTree,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

params = {'ccp_alpha': [1e-10,1e-8]}
RegressionTree=␣
↪→val_fun(RegressionTree,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

Bagging and boosting

Starting with boosting

[]: import numpy as np
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt

[]: class BoostedMse:

def __init__(self, learning_rate=0.1, n_estimators=50, max_depth=1):
self.learning_rate = learning_rate
self.n_estimators = n_estimators
self.max_depth = max_depth

def set_params(self, **params):
for param in params.keys():

setattr(self, param, params[param])
return self

def fit(self, X, y):
self.model = GradientBoostingRegressor(learning_rate=self.learning_rate,␣

↪→n_estimators=self.n_estimators, max_depth=self.max_depth)
self.model.fit(X, y)
return self

def predict(self, X):
return self.model.predict(X)

[]: params = {'ccp_alpha': [0.1,0.2,0.3], 'n_estimators' : [50 , 100 , 200] ,␣
↪→'max_depth' :[1] }

BoostedMse=␣
↪→val_fun(BoostedMse,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

There is a typo here ccp_alpha is actually the learning rate; I will not fix it as the subsequent code
takes 3 hours to run

more - Boosted

[]: params = {'ccp_alpha': [0.01], 'n_estimators' : [500 , 1000] , 'max_depth' :
↪→[1,2] }

BoostedMse=␣
↪→val_fun(BoostedMse,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

evaluate(y_tst, BoostedMse.predict(X_tst))

Model with params: {'ccp_alpha': 0.01, 'max_depth': 1, 'n_estimators': 500}
finished.
with out-of-sample MSE on validation set: 0.01294
with out-of-sample R-squared on validation set: 1.2535847%
**

Boosting using GradientBoostingRegressor is too expensive computationally for the parameters
below

I will use xgboost instead

[]: from xgboost import XGBRegressor

params = {
'n_estimators': [500,1000],
'max_depth': [7],
'random_state': [12308],
'learning_rate': [.01]

}
XGB =␣
↪→val_fun(XGBRegressor,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld)

params = {
'n_estimators': [1000],
'max_depth': [10],
'random_state': [12308],
'learning_rate': [.1]

}
XGB =␣
↪→val_fun(XGBRegressor,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld)

Random Forest

[]: from sklearn.ensemble import RandomForestRegressor

[]: class RandomForest:

def __init__(self, n_estimators=50 , max_depth=2 , max_features = 20):

self.n_estimators = n_estimators
self.max_depth = max_depth
self.max_features= max_features

def set_params(self, **params):
for param in params.keys():

setattr(self, param, params[param])
return self

def fit(self, X, y):
self.model = RandomForestRegressor(n_estimators=self.n_estimators,␣

↪→max_depth=self.max_depth)
return self

def predict(self, X):
self.max_depth, max_features=self.max_features)
self.model.fit(X, y)
return self.model.predict(X)

params = {'n_estimators': [300,400], 'max_depth' : [5 , 6 , 7] , 'max_features'␣
↪→:[30,50,100] }

[]: RandomForest=␣
↪→val_fun(RandomForest,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

evaluate(y_tst, RandomForest.predict(X_tst))

RIDGE

• I use Accelerated Proximal Gradient descent - the proximal operator of ridge penalty in defined
in appendix

• See Ridge’s regularization path using simulated data
• I then construct apply ridge on the dataset

[]: import apgpy as apg
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format = 'svg'

n = 2
m = 100
A = np.column_stack((np.ones(m), np.linspace(1, 10, m) + np.random.randn(m)))
b = 2 * np.linspace(1, 10, m) + 1 + 0.5 * np.random.randn(m)
import matplotlib.pyplot as plt

[]: # Plotting the points formed by A and b
plt.scatter(A[:, 1], b, label='Data Points')
plt.xlabel('Feature (x)')
plt.ylabel('Dependent Variable (y)')
plt.title('Generated Data Points')
plt.legend()
plt.show()
coef1_values_rid = np.array([]) # Initialize array for coefficient 1
coef2_values_rid = np.array([]) # Initialize array for coefficient 2

[]: mu_values = np.arange(200, 0, -1)

def quad_grad(y):
return np.dot(A.T, (np.dot(A, y) - b))

def prox_ridge(y, t):
return y / (1 + t * mu)

for mu in mu_values:

x = apg.solve(quad_grad, prox_ridge, np.zeros(n), use_restart=True, eps=1e-12,␣
↪→quiet=True)
coef1_values_rid = np.append(coef1_values_rid, x[0])
coef2_values_rid = np.append(coef2_values_rid, x[1])

[]: plt.plot(mu_values, coef1_values_rid , 'o', label='Coefficient 1',markersize = 2␣
↪→)

plt.plot(mu_values, coef2_values_rid , 'o', label='Coefficient 2', markersize =␣
↪→2, color = "grey")

plt.xlabel('Penalization Hyperparameter')
plt.ylabel('Coefficient Value')
plt.legend()
plt.show()

Dynamics of Ridge Penalization EVEN FOR LARGE PENALIZATION (LAMBDA = 200)
, WE DO NOT GET SPARSITY.

Applying Ridge penalty on dataset

[]: class RidgeMse :

def __init__(self, mu = 0.1):
self.mu = mu

def set_params(self, **params):
for param in params.keys():

setattr(self, param, params[param])
return self

def fit(self, X, y):
X = np.array(X)
n = X.shape[1]
y = np.array(y)

def quad_grad(beta):
return np.dot(X.T, (np.dot(X, beta) - y))

def prox_ridge(beta, t):
return beta /(1 + t * self.mu)

coef_ridge_mse = apg.solve(quad_grad, prox_ridge, np.zeros(n),␣
↪→use_restart=True, eps=1e-12, quiet=True)

self.coef = coef_ridge_mse

return self

def predict(self, X):
return np.dot(X, self.coef)

[]: params = {'mu': np.linspace(0.1,100,7).tolist()}
RidgeMse =␣
↪→val_fun(RidgeMse,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

evaluate(y_tst, RidgeMse.predict(X_tst))

Ridge with huber loss

[]: class RidgeHuber :

def __init__(self, mu = 0.1 ,delta = 0.02):
self.mu = mu
self.delta = delta

def set_params(self, **params):
for param in params.keys():

setattr(self, param, params[param])
return self

def fit(self, X, y):

X = np.array(X)
n = X.shape[1]
y = np.array(y)

def huber_loss_gradient(beta):
residual = np.dot(X, beta) - y
huber_grad = np.dot(X.T, np.where(np.abs(residual) <= self.delta,␣

↪→residual, self.delta * np.sign(residual)))
return huber_grad

def prox_ridge(beta, t):
return beta /(1 + t * self.mu)

coef_ridge_mse = apg.solve(huber_loss_gradient, prox_ridge, np.zeros(n),␣
↪→use_restart=True, eps=1e-12, quiet=True)

self.coef = coef_ridge_mse

return self

def predict(self, X):
return np.dot(X, self.coef)

[]: params = {'mu': np.linspace(0.1,100,7).tolist(),'delta':np.array([0.02, 0.03, 0.
↪→05, 0.1]) }

RidgeHuber =␣
↪→val_fun(RidgeHuber,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

I evaluate on new tuning parameters. The choice of the new parameters was done after evaluating
the previous fit. (Note I mistakenly deleted the previous evaluation results)

[]: params = {'mu': (np.logspace(np.log10(100), np.log10(800), 4)).tolist(), 'delta':
↪→ [0.025]}

RidgeHuber =␣
↪→val_fun(RidgeHuber,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld,sleep=3)

[]: evaluate(y_tst, RidgeHuber.predict(X_tst))

***************Out-of-Sample Metrics***************
The out-of-sample R2 is -5.62371%
The out-of-sample MSE is 0.00876974

Generalized additive model using second order splines

I first install the group lasso package then regresss using GLM with group lasso using 2nd order
splines

[]: from group_lasso import GroupLasso

def flatten(l):

return [item for sublist in l for item in sublist]

def SplineTransform(data,knots=3):
spline_data = pd.DataFrame(np.ones((data.shape[0],1)),index=data.

↪→index,columns=['const'])
for i in data.columns:

i_dat = data.loc[:,i]
i_sqr = i_dat**2
i_cut, bins = pd.cut(i_dat, 3, right=True, ordered=True, retbins=True)
i_dum = pd.get_dummies(i_cut)
for j in np.arange(knots):

i_dum.iloc[:,j] = i_dum.iloc[:,j]*((i_dat-bins[j])**2)
i_dum.columns = [f"{i}_{k}" for k in np.arange(1,knots+1)]
spline_data = pd.concat((spline_data,i_dat,i_dum),axis=1)

return spline_data

class GLMRegression:

def __init__(self,knots=3,lmd=1e-4,l1_reg=1e-4,random_state=12308):
self.knots = knots
self.lmd = lmd
self.random_state = random_state
self.l1_reg = l1_reg

def set_params(self, **params):
for param in params.keys():

setattr(self, param, params[param])
return self

def fit(self,X,y):
groups = [0]+flatten([list(np.repeat(i,self.knots+1))[:] for i in np.

↪→arange(1,X.shape[1]+1)])
X = SplineTransform(X)
self.mod = GroupLasso(

groups=groups,group_reg=self.lmd,l1_reg=self.l1_reg,
fit_intercept=False,random_state=self.random_state

)
self.mod = self.mod.fit(X,y)
return self

def predict(self,X):
X = SplineTransform(X)
return self.mod.predict(X)

[]: params = { 'knots':[3], 'lmd':[1e-4,1e-1], 'l1_reg':[1e-4,0]}
GLM =␣
↪→val_fun(GLMRegression,params=params,X_trn=X_trn,y_trn=y_trn,X_vld=X_vld,y_vld=y_vld)

evaluate(y_tst, GLM.predict(X_tst))

[]: class GLMRegressionHuber:

def __init__(self, knots=3, lmd=1e-4, l1_reg=1e-4, random_state=12308,␣
↪→huber_delta=1.0):

self.knots = knots
self.lmd = lmd
self.random_state = random_state
self.l1_reg = l1_reg
self.huber_delta = huber_delta

def set_params(self, **params):
for param in params.keys():

setattr(self, param, params[param])
return self

def fit(self, X, y):
groups = [0] + flatten([list(np.repeat(i, self.knots + 1))[:] for i in␣

↪→np.arange(1, X.shape[1] + 1)])
X_transformed = SplineTransform(X)

Introduce Huber loss
huber_loss = lambda x: 0.5 * x**2 if np.abs(x) <= self.huber_delta else␣

↪→self.huber_delta * (np.abs(x) - 0.5 * self.huber_delta)

self.mod = GroupLasso(
groups=groups, group_reg=self.lmd, l1_reg=self.l1_reg,
fit_intercept=False, random_state=self.random_state, loss=huber_loss

)
self.mod = self.mod.fit(X_transformed, y)
return self

def predict(self, X):
X_transformed = SplineTransform(X)
return self.mod.predict(X_transformed)

[]: params = {'knots': [3], 'lmd': [1e-4, 1e-1], 'l1_reg': [1e-4, 0], 'huber_delta':␣
↪→[1.0, 0.5]}

GLM_H = val_fun(GLMRegression, params=params, X_trn=X_trn, y_trn=y_trn,␣
↪→X_vld=X_vld, y_vld=y_vld)

evaluate(y_tst, GLM_H.predict(X_tst))

CODE FOR PCA VS ICA on dataset(PLOTS)

[]: plt.scatter(X_trn['turn*tms'], X_trn['turn*ep'], color='grey', s=10)
plt.xlabel('Interaction of Share turnover and the term spread ')

plt.ylabel('Interaction of Share turnover and earnig price ratio')
plt.title('Scatterplot of two factors')
plt.show()

[]: X1 = np.array(X_trn['turn*tms'])
X2 = np.array(X_trn['turn*ep'])
X_design= np.column_stack((X1, X2))

[]: X = (X_design - np.mean(X_design))/np.std(X_design)

[]: pca = PCA()
S_pca_ = pca.fit(X).transform(X)

ica = FastICA(whiten="unit-variance")
S_ica_ = ica.fit(X).transform(X) # Estimate the sources

[]: import matplotlib.pyplot as plt

[]: def plot_samples(S, axis_list=None):
plt.scatter(

S[:, 0], S[:, 1], s=2, marker="o", zorder=10, color="grey", alpha=0.5
)
if axis_list is not None:

for axis, color, label in axis_list:
axis /= axis.std()
x_axis, y_axis = axis
plt.quiver(

(0, 0),
(0, 0),
x_axis,
y_axis,
zorder=11,
width=0.01,
scale=6,
color=color,
label=label,

)

plt.hlines(0, -10, 10, linestyles='dashed', colors='black', linewidth=0.5)
plt.vlines(0, -10, 10, linestyles='dashed', colors='black', linewidth=0.5)
plt.xlim(-4, 8)
plt.ylim(-5, 8)
plt.xlabel('Interaction of Share turnover and the term spread')
plt.ylabel('Interaction of Share turnover and earning price ratio')

axis_list = [(pca.components_.T, "brown", "PCA"), (ica.mixing_, "blue", "ICA")]

Plot 1: Observations
plt.figure()
plot_samples(X, axis_list=axis_list)
legend = plt.legend(loc="lower right")
legend.set_zorder(100)
plt.title("PCA vs ICA ")
plt.savefig('observations_plot.png') # Save the plot as a PNG file

Plot 2: PCA recovered signals
plt.figure()
plot_samples(S_pca_ / np.std(S_pca_, axis=0))
plt.title("PCA recovered signals")
plt.savefig('pca_recovered_plot.png') # Save the plot as a PNG file

Plot 3: ICA recovered signals
plt.figure()
plot_samples(S_ica_ / np.std(S_ica_))

plt.title("ICA recovered signals")
plt.savefig('ica_recovered_plot.png') # Save the plot as a PNG file

plt.show()

References

[1] Peter Bossaerts and Pierre Hillion. Implementing Statistical Criteria to Select Return Forecasting

Models: What Do We Learn? The Review of Financial Studies, 12(2):405–428, 06 2015.

[2] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Regression Trees. Taylor

& Francis, 1984.

[3] J. Cochrane. Asset Pricing: Revised Edition. Princeton University Press, 2009.

[4] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and

an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

[5] Joachim Freyberger, Andreas Neuhierl, and Michael Weber. Dissecting Characteristics Nonpara-

metrically. The Review of Financial Studies, 33(5):2326–2377, 04 2020.

[6] Amit Goyal and Ivo Welch. Predicting the equity premium with dividend ratios. Management

Science, 49(5):639–654, 2003.

[7] Yves Grandvalet. Bagging equalizes influence. Mach. Learn., 55(3):251–270, jun 2004.

[8] Jeremiah Green, John R. M. Hand, and X. Frank Zhang. The Characteristics that Provide

Independent Information about Average U.S. Monthly Stock Returns. The Review of Financial

Studies, 30(12):4389–4436, 03 2017.

[9] Shihao Gu, Bryan Kelly, and Dacheng Xiu. Empirical Asset Pricing via Machine Learning. The

Review of Financial Studies, 33(5):2223–2273, 02 2020.

[10] A.J. Hendrikse and Lieuwe Jan Spreeuwers. Component ordering in independent component anal-

ysis based on data power. In Raymond N.J. Veldhuis, R.N.J. Veldhuis, and H.S. Cronie, editors,

Proceedings of the 28th Symposium on Information Theory in the Benelux, number LNCS4549,

pages 211–218, Netherlands, June 2007. Werkgemeenschap voor Informatie- en Communicati-

etheorie (WIC). 28th Symposium on Information Theory in the Benelux 2007 ; Conference date:

24-05-2007 Through 25-05-2007.

[11] Bryan T. Kelly and Dacheng Xiu. Financial Machine Learning. NBER Working Papers 31502,

National Bureau of Economic Research, Inc, July 2023.

[12] A.J. Laub. Matrix Analysis for Scientists and Engineers. Other Titles in Applied Mathematics.

Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia,

PA 19104), 2005.

133

[13] Stephen F. LeRoy and Jan Werner. Principles of Financial Economics. Cambridge University

Press, 2 edition, 2014.

[14] Jonathan Lewellen. The cross-section of expected stock returns. Critical Finance Review, 4, 01

2011.

[15] Sydney C. Ludvigson and Serena Ng. The empirical risk–return relation: A factor analysis ap-

proach. Journal of Financial Economics, 83(1):171–222, 2007.

[16] D. McFadden. Conditional logit analysis of qualitative choice behavior. Technical Report 105-142,

Frontiers in Econometric, New York, 1974.

[17] Rajnish Mehra and Edward C. Prescott. The equity premium: A puzzle. Journal of Monetary

Economics, 15(2):145–161, 1985.

[18] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. Adaptive

Computation and Machine Learning series. MIT Press, 2012.

[19] Stefan Nagel. Machine Learning in Asset Pricing, volume 8. Princeton University Press, 2021.

[20] L. Oneto, S. Ridella, and D. Anguita. Tikhonov, ivanov and morozov regularization for support

vector machine learning. Machine Learning, 103(1):103–136, 2015.

[21] David Rapach and Guofu Zhou. Chapter 6 - forecasting stock returns. In Graham Elliott and Allan

Timmermann, editors, Handbook of Economic Forecasting, volume 2 of Handbook of Economic

Forecasting, pages 328–383. Elsevier, 2013.

[22] Richard Roll. A critique of the asset pricing theory’s tests part i: On past and potential testability

of the theory. Journal of Financial Economics, 4(2):129–176, 1977.

[23] Cosma Rohilla Shalizi. Advanced data analysis from an elementary point of view. 2012.

[24] James H. Stock and Mark W. Watson. Forecasting using principal components from a large

number of predictors. Journal of the American Statistical Association, 97(460):1167–1179, 2002.

[25] James V. Stone. Independent component analysis: an introduction. Trends in Cognitive Sciences,

6(2):59–64, 2002.

[26] Nassim Nicholas Taleb. Statistical consequences of fat tails: Real world preasymptotics, episte-

mology, and applications, 2022.

[27] Nassim Nicholas Taleb, Pierre Zalloua, Khaled Elbassioni, Andreas Henschel, and Daniel E. Platt.

Informational rescaling of pca maps with application to genetic distance, 2023.

134

[28] ROBERT TIBSHIRANI. The lasso method for variable selection in the cox model. Statistics in

Medicine, 16(4):385–395, 1997.

[29] V. Vapnik. The Nature of Statistical Learning Theory. Information Science and Statistics. Springer

New York, 1999.

[30] Larry Wasserman. All of Nonparametric Statistics (Springer Texts in Statistics). Springer-Verlag,

Berlin, Heidelberg, 2006.

[31] Ivo Welch and Amit Goyal. A comprehensive look at the empirical performance of equity premium

prediction. The Review of Financial Studies, 21(4):1455–1508, 2008.

135

	Introduction - Underlying theory and rationale
	Theoretical Framework
	Necessity for Machine Learning Methods

	Methodology
	Underlying Machine Learning Theory
	Statistical Learning theory

	L1, L2 and Elastic Net Regularizations
	Regularization and Overfitting
	Regularization and Ill-posedness

	Dimension Reduction Methods
	Principal Component Analysis
	Independent Component Analysis

	Robust Linear Estimation
	Numerical Methods
	Generalized Additive models
	Regression Trees
	Regression Trees
	Ensemble methods
	Random Forest
	Boosted Trees

	Predictive Evaluation Metrics
	Resampling Methods
	Empirical Analysis
	Conclusion
	Technical Appendix
	Multicollinearity Evaluation
	The Variance Inflation Factor
	The Conditional Number

	Backfitting Algorithm for GAMs
	The Variance-Bias Decomposition
	Least-Norm solution
	Proximal Operators
	Independent Component Analysis Visualized
	 List of Factors
	Code

